cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007781 a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.

Original entry on oeis.org

1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
Offset: 0

Views

Author

Peter McCormack (peter.mccormack(AT)its.csiro.au)

Keywords

Comments

(12n^2 + 6n + 1)^2 divides a(6n+1), where (12n^2 + 6n + 1) = (2n+1)^3 - (2n)^3 = A127854(n) = A003215(2n) are the hex (or centered hexagonal) numbers. The prime numbers of the form 12n^2 + 6n + 1 belong to A002407. - Alexander Adamchuk, Apr 09 2007

Examples

			a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).

Crossrefs

Programs

Formula

a(n) = A000312(n+1) - A000312(n) for n>0, a(0) = 1.
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022

A068955 Greatest prime factor of n^n - (n-1)^(n-1).

Original entry on oeis.org

3, 23, 229, 151, 431, 776887, 14731, 109, 80317, 275311670611, 19395030961, 10423708597, 968299894201, 19428121, 165218809021364149, 808793517812627212561, 3979203955386313, 588489604729898953429, 2126173979464312447783, 5043293621028391, 90772326303985278570534379
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 968299894201.
		

Crossrefs

Programs

  • Maple
    a:= n-> max(map(i-> i[1], ifactors(n^n-(n-1)^(n-1))[2])):
    seq(a(n), n=2..23);  # Alois P. Heinz, Mar 10 2019
  • Mathematica
    a[n_] := FactorInteger[n^n - (n-1)^(n-1)][[-1, 1]]; Array[a, 20, 2] (* Amiram Eldar, Feb 06 2020 *)
  • PARI
    a(n) = vecmax(factor(n^n-(n-1)^(n-1))[,1]); \\ Daniel Suteu, Mar 10 2019

Formula

a(n) = A006530(A007781(n-1)).

Extensions

a(18)-a(22) from Daniel Starodubtsev, Mar 10 2019

A068954 Smallest prime factor of n^n-(n-1)^(n-1).

Original entry on oeis.org

3, 23, 229, 19, 101, 776887, 3, 7, 29, 275311670611, 5, 28201, 3, 52489, 109, 808793517812627212561, 9680119, 5, 3, 1137694897331, 3697, 29, 6361, 10667, 3, 23, 17787551, 41393681953973, 7, 4211, 3, 461, 83, 19, 31, 983, 3, 5, 89, 2251, 250460976091, 109, 3, 29
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 3.
		

Crossrefs

Formula

a(n) = A020639(A007781(n)).

Extensions

a(20)-a(40) from Daniel Starodubtsev, Mar 10 2019
a(41)-a(45) from Chai Wah Wu, Jul 15 2019

A068957 Number of prime divisors of n^n - (n-1)^(n-1), counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 3, 2, 4, 3, 2, 1, 2, 3, 4, 2, 2, 3, 3, 4, 9, 4, 2, 2, 5, 4, 6, 3, 6, 4, 4, 2, 6, 7, 6, 4, 3, 4, 8, 6, 2, 7, 4, 7, 12, 6, 4, 5, 5, 7, 9, 5, 5, 6, 2, 5, 10, 4, 6, 5, 5, 3, 9, 4, 4, 2, 3, 4, 9, 4, 6, 4, 5, 7, 9, 13, 8, 4, 2, 5, 7
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 11 2002

Keywords

Examples

			A007781(14) = 10809131718965763 = 3 * 61^2 * 968299894201, therefore a(14) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[ Apply[ Plus, Transpose[ FactorInteger[n^n - (n - 1)^(n - 1)]] [[ -1]]], {n, 2, 52}]

Formula

a(n) = A001222(A007781(n)).

Extensions

Edited and extended by Robert G. Wilson v, Mar 15 2002
a(53)-a(86) from Amiram Eldar, Feb 06 2020
Showing 1-4 of 4 results.