cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A038509 Composite numbers congruent to +-1 mod 6.

Original entry on oeis.org

25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1

Views

Author

Keywords

Comments

Or, composite numbers with smallest prime factor >= 5.
Or, nonprime numbers n such that binomial(n+3, 3) mod n == 1. - Hieronymus Fischer, Sep 30 2007
Note that the primes > 3 are congruent to +-1 mod 6.
This sequence differs from A067793 (composite n such that phi(n) > 2n/3) starting at 385. Numbers in this sequence but not in A067793 are 385, 455, 595, 665, 805, 1015, 1085, 1925, 2275, 2695, etc. See A069043. - R. J. Mathar, Jun 08 2008 and Zak Seidov, Nov 02 2011
Intersection of A002808 and A007310. - Reinhard Zumkeller, Jun 30 2012
The product (24/25) * (36/35) * (48/49) * (54/55) * (66/65) * (78/77) * (84/85) * (90/91) * ... * ((6*k)/a(n)) * ... = Pi^2/(6*sqrt(3)), where 6*k is the nearest number to a(n), with k in A067611 but not in A002822. (See A258414.) - Dimitris Valianatos, Mar 27 2017

Crossrefs

Cf. A171993 (nonprimes of the form 3*k+-1).
Cf. A069043, A067793 (composite n such that phi(n) > 2n/3).

Programs

  • Haskell
    a038509 n = a038509_list !! (n-1)
    a038509_list = [x | x <- a002808_list, gcd x 6 == 1]
    -- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
    
  • Maple
    A038509 := proc(n)
        option remember;
        if n = 1 then
            25;
        else
            for a from procname(n-1)+1 do
                if not isprime(a) and modp(a,6) in {1,5} then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
  • Mathematica
    Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *)
    With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *)
    Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
  • PARI
    is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) ~ 3n. - Charles R Greathouse IV, Nov 20 2012

Extensions

More terms from Robert G. Wilson v, Dec 19 2009
Entry revised by N. J. A. Sloane, Dec 31 2011, at the suggestion of Gary Detlefs

A067793 Nonprimes n such that phi(n) > 2n/3.

Original entry on oeis.org

1, 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 391, 395, 403, 407, 413, 415, 425, 427
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Comments

Differs from A038509 in the first entry and in addition as documented in A069043. - R. J. Mathar, Sep 30 2008
It appears that a(n) lists the composite values of n which satisfy the condition sum(k^2,k=1..n) mod n = A000330(n) mod n = A215573(n) = 0. - Gary Detlefs, Nov 16 2011
Conjecture: Odd composite n such that (n^2 + 8) mod 3 = 0. (All primes > 3 meet this criterion). - Gary Detlefs, May 03 2012
Both conjectures are wrong. The first counterexample is 385. - Robert Israel, May 17 2017
The semiprime numbers p * q, p, q > 3, are terms. - Marius A. Burtea, Oct 01 2019

Examples

			10 is not in the list because phi(10) = 4 < 2*10/3. 25 is in the list because phi(25) = 20 > 2*25/3.
		

Crossrefs

Cf. A166362.

Programs

  • Magma
    [k:k in [1..400]| not IsPrime(k) and EulerPhi(k) gt 2*k/3]; // Marius A. Burtea, Oct 01 2019
  • Maple
    select(n -> not isprime(n) and numtheory:-phi(n) > 2*n/3, [$1..1000]); # Robert Israel, May 17 2017
  • Mathematica
    Select[Range[1000], ! PrimeQ[#] && EulerPhi[#] > 2 #/3 &] (* T. D. Noe, Nov 02 2011 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (!isprime(n) && (eulerphi(n)/n > 2/3), print1(n, ", ")););} \\ Michel Marcus, Jul 05 2015
    

Extensions

Definition clarified by Michel Marcus, Jul 05 2015
Incorrect Maple program removed by Robert Israel, May 17 2017
Showing 1-2 of 2 results.