A038509
Composite numbers congruent to +-1 mod 6.
Original entry on oeis.org
25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 175, 185, 187, 203, 205, 209, 215, 217, 221, 235, 245, 247, 253, 259, 265, 275, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 385
Offset: 1
Cf.
A171993 (nonprimes of the form 3*k+-1).
-
a038509 n = a038509_list !! (n-1)
a038509_list = [x | x <- a002808_list, gcd x 6 == 1]
-- Reinhard Zumkeller, Aug 05 2014, Jun 30 2012
-
A038509 := proc(n)
option remember;
if n = 1 then
25;
else
for a from procname(n-1)+1 do
if not isprime(a) and modp(a,6) in {1,5} then
return a;
end if;
end do:
end if;
end proc:
seq(A038509(n),n=1..30) ; # R. J. Mathar, Feb 28 2020
-
Select[Range[1000], FactorInteger[#][[1,1]] >= 5 && ! PrimeQ[#] &] (* Robert G. Wilson v, Dec 19 2009 *)
With[{nn=400},Select[Rest[Complement[Range[nn],Prime[Range[ PrimePi[ nn]]]]], MemberQ[ {1,5},Mod[#,6]]&]] (* Harvey P. Dale, Feb 21 2013 *)
Select[Range[400],CompositeQ[#]&&MemberQ[{1,5},Mod[#,6]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 13 2019 *)
-
is(n)=gcd(n,6)==1 && !isprime(n) && n>7 \\ Charles R Greathouse IV, Nov 20 2012
A069043
Composite numbers k with no prime factor among (2, 3) (cf. A038509) and such that phi(k) < 2*k/3.
Original entry on oeis.org
385, 455, 595, 665, 805, 1015, 1085, 1925, 2275, 2695, 2975, 3185, 3325, 4025, 4165, 4235, 4655, 5005, 5075, 5425, 5635, 5915, 6545, 7105, 7315, 7595, 7735, 8645, 8855, 9625, 10115, 10465, 11165, 11305, 11375, 11935, 12155, 12635, 13195, 13475
Offset: 1
-
[k:k in [1..14000]| not IsPrime(k) and Gcd(6,k) eq 1 and EulerPhi(k) lt 2*k/3]; // Marius A. Burtea, Oct 01 2019
-
Select[Flatten @ Table[6*n + {1, 5}, {n, 0, 2500}], CompositeQ[#] && EulerPhi[#] < 2*#/3 &] (* Amiram Eldar, Jun 09 2022 *)
-
lista(nn) = {forcomposite(n=1, nn, if ((gcd(n, 6) == 1) && (n/eulerphi(n) > 3/2), print1(n, ", ")););} \\ Michel Marcus, Jul 05 2015
A054550
Composite numbers whose least prime factor is either 5 or 7.
Original entry on oeis.org
25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 125, 133, 145, 155, 161, 175, 185, 203, 205, 215, 217, 235, 245, 259, 265, 275, 287, 295, 301, 305, 325, 329, 335, 343, 355, 365, 371, 385, 395, 413, 415, 425, 427, 445, 455, 469, 475, 485, 497, 505, 511, 515, 535
Offset: 1
Stuart M. Ellerstein (ellerstein(AT)aol.com), May 15 2000
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
-
Union[Flatten[Table[{30n+{25,35},42n+{49,77}},{n,0,20}]]] (* Harvey P. Dale, Feb 19 2016 *)
-
select( is_A054550(n)=vecsum((n=factor(n,0))[,2])>1&&n[1,1]>=5, [0..550]) \\ M. F. Hasler, Nov 18 2018
-
Vec(x*(25 + 10*x + 14*x^2 + 6*x^3 + 10*x^4 + 12*x^5 + 8*x^6 + 6*x^7 + 4*x^8 + 20*x^9 + 4*x^10 + 6*x^11 + 8*x^12 + 12*x^13 + 10*x^14 + 6*x^15 + 14*x^16 + 10*x^17 + 18*x^18 + 2*x^19 + 10*x^20 + 2*x^21 - 7*x^22) / ((1 - x)^2*(1 + x)*(1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^60)) \\ Colin Barker, Nov 19 2018
A287918
Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1.
Original entry on oeis.org
1, 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 125, 133, 143, 145, 155, 161, 169, 185, 187, 203, 205, 209, 215, 217, 221, 235, 247, 253, 259, 265, 287, 289, 295, 299, 301, 305, 319, 323, 325, 329, 335, 341, 343, 355, 361, 365, 371, 377, 391, 395, 403
Offset: 1
From _Michael De Vlieger_, Jun 14 2017: (Start)
List of nonprime totatives 1 <= t <= m for m <= 210 in A036913:
m: 1 <= t <= m
2: 1;
6: 1;
12: 1;
18: 1;
30: 1;
42: 1, 25;
60: 1, 49;
66: 1, 25, 35, 49, 65;
90: 1, 49, 77;
120: 1, 49, 77, 91, 119;
126: 1, 25, 55, 65, 85, 95, 115, 121, 125;
150: 1, 49, 77, 91, 119, 121, 133, 143;
210: 1, 121, 143, 169, 187, 209;
...
Indices of A036913 of first and last terms m such that gcd(a(n),m)=1:
n a(n) Freq. First Last
-------------------------------
1 1 oo 1 oo
2 25 4 6 18
3 35 1 8 8
4 49 14 7 40
5 55 1 11 11
6 65 3 8 18
7 77 8 9 24
8 85 2 11 18
9 91 11 10 40
10 95 2 11 18
11 115 2 11 18
12 119 9 10 27
13 121 75 11 308
14 125 2 11 18
15 133 10 12 40
16 143 36 12 107
17 145 1 18 18
18 155 1 18 18
19 161 8 14 40
20 169 96 13 248
...
Positions of squared primes q^2 in a(n):
q^2 q
n a(n) sqrt(a(n)) k m = A036913(k)
----------------------------------------------
2 25 5 6 42
4 49 7 7 60
13 121 11 11 126
20 169 13 13 210
35 289 17 16 330
48 361 19 17 420
71 529 23 20 630
107 841 29 25 1050
123 961 31 25 1050
173 1369 37 28 1470
210 1681 41 30 1890
234 1849 43 30 1890
283 2209 47 31 2310
303 2401 49 40 5610
359 2809 53 33 2940
456 3481 59 35 3570
486 3721 61 36 3990
598 4489 67 37 4620
676 5041 71 39 5460
721 5329 73 39 5460
...
(End)
-
With[{nn = 403, s = Union@FoldList[Max, Values[#][[All, -1]]] &@ KeySort@ PositionIndex@ EulerPhi@ Range[Product[Prime@ i, {i, 8}]]}, Union@ Flatten@ Map[Function[n, Select[Range@ Min[n, nn], And[CoprimeQ[#, n], ! PrimeQ@ #] &]], s]] (* Michael De Vlieger, Jun 14 2017 *)
Showing 1-4 of 4 results.
Comments