A069051 Primes p such that p-1 divides 2^p-2.
2, 3, 7, 19, 43, 127, 163, 379, 487, 883, 1459, 2647, 3079, 3943, 5419, 9199, 11827, 14407, 16759, 18523, 24967, 26407, 37339, 39367, 42463, 71443, 77659, 95923, 99079, 113779, 117307, 143263, 174763, 175447, 184843, 265483, 304039, 308827
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..3314 (First 553 terms from V. Raman)
- Mersenne Forum, Prime Conjecture
Crossrefs
Programs
-
GAP
Filtered([1..350000],p->IsPrime(p) and (2^p-2) mod (p-1)=0); # Muniru A Asiru, Dec 03 2018
-
Magma
[p : p in PrimesUpTo(310000) | IsZero((2^p-2) mod (p-1))]; // Vincenzo Librandi, Dec 03 2018
-
Mathematica
Select[Prime[Range[10000]], Mod[2^# - 2, # - 1] == 0 &] (* T. D. Noe, Sep 19 2012 *) Join[{2,3},Select[Prime[Range[30000]],PowerMod[2,#,#-1]==2&]] (* Harvey P. Dale, Apr 17 2022 *)
-
PARI
isA069051(p)=Mod(2,p-1)^p==2 && isprime(p); \\ Charles R Greathouse IV, Sep 19 2012
-
Python
from sympy import prime for n in range(1,350000): if (2**prime(n)-2) % (prime(n)-1)==0: print(prime(n)) # Stefano Spezia, Dec 07 2018
Extensions
a(1) added by Charles R Greathouse IV, Sep 19 2012
Comments