cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A010013 a(0) = 1, a(n) = 23*n^2 + 2 for n>0.

Original entry on oeis.org

1, 25, 94, 209, 370, 577, 830, 1129, 1474, 1865, 2302, 2785, 3314, 3889, 4510, 5177, 5890, 6649, 7454, 8305, 9202, 10145, 11134, 12169, 13250, 14377, 15550, 16769, 18034, 19345, 20702, 22105, 23554, 25049, 26590, 28177, 29810, 31489, 33214, 34985, 36802, 38665
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 23 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)

Formula

G.f.: (1+x)*(1+21*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*23+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(46)/92*Pi*coth( Pi*sqrt(46)/23) = 1.0677349581... - R. J. Mathar, May 07 2024
a(n) = A069174(n)+A069174(n+1). - R. J. Mathar, May 07 2024

A195039 23 times triangular numbers.

Original entry on oeis.org

0, 23, 69, 138, 230, 345, 483, 644, 828, 1035, 1265, 1518, 1794, 2093, 2415, 2760, 3128, 3519, 3933, 4370, 4830, 5313, 5819, 6348, 6900, 7475, 8073, 8694, 9338, 10005, 10695, 11408, 12144, 12903, 13685, 14490, 15318, 16169, 17043, 17940, 18860
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

Related to the primitive Pythagorean triple [15, 8, 17].
Sequence found by reading the line from 0, in the direction 0, 23, ..., and the same line from 0, in the direction 0, 69, ..., in the Pythagorean spiral whose edges have length A195035 and whose vertices are the numbers A195036. This is the main diagonal of the square spiral.

Crossrefs

Bisection of A195036.

Programs

  • Mathematica
    23*Accumulate[Range[0,40]] (* or *) LinearRecurrence[{3,-3,1},{0,23,69},50] (* Harvey P. Dale, Aug 28 2012 *)
  • PARI
    a(n)=23*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (23*n^2 + 23*n)/2 = 23*n*(n+1)/2 = 23*A000217(n).
a(0)=0, a(1)=23, a(2)=69, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 28 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 23*x/(1-x)^3.
E.g.f.: 23*exp(x)*x*(2 + x)/2.
a(n) = A069174(n+1) - 1. (End)

A276263 Centered 23-gonal primes.

Original entry on oeis.org

139, 829, 4831, 15319, 36709, 53959, 58789, 65551, 74521, 107089, 142969, 198859, 227011, 278071, 292561, 727399, 750721, 804541, 879199, 957169, 1181281, 1325491, 1364821, 1519519, 1700161, 1835401, 1881631, 2111539, 2231461, 2396509, 2778079, 2926981, 3067879
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (23*k^2 + 23*k + 2)/2.
Numbers k such that (23*k^2 + 23*k + 2)/2 is prime: 3, 8, 20, 36, 56, 68, 71, 75, 80, 96, 111, 131, 140, 155, 159, 251, 255, 264, 276, ...

Crossrefs

Cf. centered k-gonal primes listed in A276261.

Programs

  • Mathematica
    Intersection[Table[(23 k^2 + 23 k + 2)/2, {k, 0, 1000}], Prime[Range[230000]]]
    Select[Table[(23k^2+23k+2)/2,{k,600}],PrimeQ] (* Harvey P. Dale, Jun 17 2021 *)
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(23*n^2 + 23*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016
Showing 1-5 of 5 results.