A069705 a(n) = 2^n mod 7.
1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4
Offset: 0
Examples
a(4)=16 mod 7=2, a(5)=32 mod 7=4, a(6)=64 mod 7=1.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Crossrefs
Programs
-
GAP
List([0..83],n->PowerMod(2,n,7)); # Muniru A Asiru, Jan 31 2019
-
Magma
[Modexp(2, n, 7): n in [0..100]]; // Vincenzo Librandi, Mar 25 2016
-
Maple
A069705 := proc(n) op((n mod 3)+1,[1,2,4]) ; end proc: # R. J. Mathar, Feb 05 2011
-
Mathematica
PowerMod[2,Range[0,110],7] (* or *) PadRight[{},110,{1,2,4}] (* Harvey P. Dale, Mar 28 2015 *)
-
PARI
a(n)=2^(n%3)%7 \\ Charles R Greathouse IV, Jun 11 2015
-
PARI
a(n) = lift(Mod(2, 7)^n); \\ Altug Alkan, Mar 25 2016
-
Sage
[power_mod(2,n,7) for n in range(0, 105)] # Zerinvary Lajos, Jun 07 2009
Formula
n=0 mod 3 -> a(n)=1 n=1 mod 3 -> a(n)=2 n=2 mod 3 -> a(n)=4.
a(n) = 2^(n mod 3). - Paul Barry, Oct 06 2003
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-3).
G.f.: (1+2*x+4*x^2)/((1-x) * (1+x+x^2)). (End)
a(n) = (7+5*cos(2*(n+1)*Pi/3)-sqrt(3)*sin(2*(n+1)*Pi/3))/3. - Wesley Ivan Hurt, Oct 01 2017
From Nicolas Bělohoubek, Nov 11 2021: (Start)
a(n) = 8/(a(n-2)*a(n-1)).
a(n) = n + 1 + floor((n+1)/3) - 4*floor(n/3). - Ridouane Oudra, Sep 25 2024
E.g.f.: (7*exp(x) - 2*exp(-x/2)*(2*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)))/3. - Stefano Spezia, Sep 27 2024
Comments