A069835 Define an array as follows: b(i,0)=b(0,j)=1, b(i,j) = 2*b(i-1,j-1) + b(i-1,j) + b(i,j-1). Then a(n) = b(n,n).
1, 4, 22, 136, 886, 5944, 40636, 281488, 1968934, 13875544, 98365972, 700701808, 5011371964, 35961808432, 258805997752, 1867175631136, 13500088649734, 97794850668952, 709626281415076, 5157024231645616, 37528209137458516, 273431636191026064, 1994448720786816712
Offset: 0
Examples
The array b is a rewriting of A081577: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, ... 1, 7, 22, 46, 79, 121, 172, 232, 301, 379, 466, ... 1, 10, 46, 136, 307, 586, 1000, 1576, 2341, 3322, 4546, ... 1, 13, 79, 307, 886, 2086, 4258, 7834, 13327, 21331, 32521, ...
References
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 0..250
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
Crossrefs
Cf. A001850.
Programs
-
GAP
List([0..25],n->Sum([0..n],k->Binomial(n,k)^2*3^k)); # Muniru A Asiru, Jul 29 2018
-
Haskell
a069835 n = a081577 (2 * n) n -- Reinhard Zumkeller, Mar 16 2014
-
Mathematica
Table[Hypergeometric2F1[-n, -n, 1, 3], {n, 0, 21}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)^2*3^k)
-
PARI
a(n)=if(n<0, 0, polcoeff((1+4*x+3*x^2)^n, n))
-
PARI
/* as lattice paths: same as in A092566 but use */ steps=[[1,0], [0,1], [1,1], [1,1]]; /* note the double [1,1] */ \\ Joerg Arndt, Jul 01 2011
-
PARI
a(n)=pollegendre(n,2)<
Charles R Greathouse IV, Mar 18 2017
Formula
From Vladeta Jovovic, May 13 2003: (Start)
a(n) = 2^n*LegendreP(n, 2) = 2^n*hypergeom([ -n, n+1], [1], -1/2) = 2^n*GegenbauerC(n, 1/2, 2) = Sum_{k=0..n} 3^k*binomial(n, k)^2.
D-finite with recurrence: a(n) = 4*(2*n-1)/n*a(n-1) - 4*(n-1)/n*a(n-2).
G.f.: 1/sqrt(1 - 8*x + 4*x^2). (End)
a(n) equals the central coefficient of (1 + 4*x + 3*x^2)^n. - Paul D. Hanna, Jun 03 2003
E.g.f.: exp(4*x)*Bessel_I(0, 2*sqrt(3)*x). - Paul Barry, Sep 20 2004
a(n) = Sum_{k=0..floor(n/2)} C(n, k)*C(2*(n-k), n)*(-1)^k*2^(n-2*k). - Paul Barry, May 25 2005
a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)*2^(n-k). - Paul Barry, May 25 2005
a(n) = Sum_{k=0..n} C(n, k)^2*3^k. - Paul Barry, Oct 15 2005
G.f.: 1/(1-4x-6x^2/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2/(1-... (continued fraction). - Paul Barry Jan 24 2011
Asymptotic: a(n) ~ sqrt(1/2 + 1/sqrt(3))*(1+sqrt(3))^(2*n)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 11 2012
0 = a(n)*(16*a(n+1) - 48*a(n+2) + 8*a(n+3)) + a(n+1)*(-16*a(n+1) + 64*a(n+2) - 12*a(n+3)) + a(n+2)*(-4*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Apr 21 2020
Comments