cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A069995 Decimal expansion of the real positive solution to zeta(x)=x.

Original entry on oeis.org

1, 8, 3, 3, 7, 7, 2, 6, 5, 1, 6, 8, 0, 2, 7, 1, 3, 9, 6, 2, 4, 5, 6, 4, 8, 5, 8, 9, 4, 4, 1, 5, 2, 3, 5, 9, 2, 1, 8, 0, 9, 7, 8, 5, 1, 8, 8, 0, 0, 9, 9, 3, 3, 3, 7, 1, 9, 4, 0, 3, 7, 5, 6, 0, 0, 9, 8, 0, 7, 2, 6, 7, 2, 0, 0, 5, 6, 8, 8, 1, 3, 9, 0, 3, 4, 7, 4, 3, 0, 9, 5, 9, 7, 5, 5, 4, 4, 3, 9, 1, 8, 0, 6, 6, 0
Offset: 1

Views

Author

Benoit Cloitre, May 01 2002

Keywords

Comments

Fixed point of Riemann zeta function. - Michal Paulovic, Dec 31 2017

Examples

			1.83377265168027139624564858944152359218097851880099333719403756009807267200...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[ Zeta[x] == x, {x, 2}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    solve(x=1.5,2,zeta(x)-x) \\ Michal Paulovic, Dec 31 2017
    
  • Sage
    (zeta(x)==x).find_root(1,2,x) # G. C. Greubel, Apr 01 2019

Extensions

Corrected and extended by Michal Paulovic, Dec 31 2017

A324859 Decimal expansion of 0.1990753..., an inflection point of a Hurwitz zeta fixed-point function.

Original entry on oeis.org

1, 9, 9, 0, 7, 5, 3, 0, 3, 5, 4, 4, 7, 7, 2, 8, 5, 4, 9, 7, 1, 1, 3, 0, 0, 3, 5, 0, 7, 2, 2, 2, 8, 4, 2, 1, 6, 8, 8, 2, 8, 6, 6, 3, 2, 0, 1, 6, 3, 1, 5, 1, 0, 7, 6, 1, 0, 1, 4, 8, 1, 0, 1, 7, 7, 9, 7, 0, 6, 9, 3, 8, 2, 0, 3, 4, 0, 7, 2, 1, 0, 3, 6, 6, 9, 8, 1, 6, 4, 0, 4, 4, 7, 4, 9, 2, 4, 1, 9, 7
Offset: 0

Views

Author

Reikku Kulon, Mar 18 2019

Keywords

Comments

For real values of the parameter "a" between 0 and 1, a real fixed point "s" of the iterated Hurwitz zeta function [s = zetahurwitz(s, a)] lies on a curve that passes through A069857 (-0.295905...) and has a maximum tending toward 1. This curve has inflection points for a = 0.1990753... or 0.91964... . The fixed point "s" on this curve for the iteration "s = zetahurwitz(s, A324859)" is A324860 (0.5250984...).

Examples

			0.1990753035447728549711300350722284216882866320163...
		

Crossrefs

Programs

  • PARI
    solve(t = 1/16, 1/2, derivnum(x = t, solve(v = -1, 1 - x, v - zetahurwitz(v, x)), 2); )

A324860 Decimal expansion of 0.5250984..., a real fixed point of the iteration s = zetahurwitz(s, A324859).

Original entry on oeis.org

5, 2, 5, 0, 9, 8, 4, 2, 4, 6, 2, 8, 8, 9, 2, 5, 7, 2, 1, 1, 5, 4, 3, 8, 9, 1, 2, 3, 9, 5, 8, 5, 1, 3, 1, 6, 4, 2, 9, 6, 3, 1, 1, 0, 7, 5, 4, 8, 7, 9, 6, 3, 2, 0, 1, 8, 8, 7, 0, 2, 4, 4, 4, 9, 1, 7, 8, 5, 4, 5, 6, 9, 1, 4, 0, 6, 5, 5, 2, 5, 1, 2, 7, 7, 0, 0, 7, 6, 0, 9, 1, 1, 9, 5, 2, 7, 2, 0, 9, 5
Offset: 0

Views

Author

Reikku Kulon, Mar 18 2019

Keywords

Comments

For real values of the parameter "a" between 0 and 1, a real fixed point "s" of the iterated Hurwitz zeta function [s = zetahurwitz(s, a)] lies on a curve that passes through A069857 (-0.295905...) and has a maximum tending toward 1. This curve has inflection points for a = 0.1990753... (A324859) or 0.91964... . The fixed point "s" on this curve for the iteration "s = zetahurwitz(s, A324859)" is 0.5250984... .

Examples

			0.525098424628892572115438912395851316429631107548...
		

Crossrefs

Programs

  • PARI
    { A324859 = solve(t = 1/16, 1/2, derivnum(x = t, solve(v = -1, 1 - x, v - zetahurwitz(v, x)), 2); ); solve(v = -1, 1 - A324859, v - zetahurwitz(v, A324859)) }

A072115 Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x.

Original entry on oeis.org

0, 3, 2, 1, 1, 1, 2, 1, 7, 14, 1, 2, 10, 1, 5, 3, 1, 7, 2, 1, 2, 2, 2, 4, 1, 1, 12, 1, 1, 1, 14, 2, 10, 3, 5, 6, 2, 1, 6, 13, 1, 2, 2, 4, 8, 1, 4, 8, 2, 1, 16, 1, 1, 1, 1, 4, 2, 1, 1, 1, 3, 13, 4, 1, 2, 1, 6, 1, 1, 2, 43, 1, 3, 1, 1, 2, 2, 2, 1, 2, 2, 2, 10, 5, 4, 8, 1, 5, 3, 2, 1, 1, 3, 2, 19
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

Start from any complex number z=x+iy, not solution to zeta(z)=z, iterate the zeta function on z. If zeta_m(z) (=zeta(zeta(....(z)..)) m times) has a limit when m grows, then this limit seems to always be the real number : C=-0.2959050055752....Example: if z=3+5I after 30 iterations : zeta_30(z)=-0.29590556499...-0.00000041029065...*I

Crossrefs

Cf. A069857 (decimal expansion).

Programs

  • PARI
    \p150 contfrac(abs(solve(X=-1,0,zeta(X)-X)))

Extensions

Offset changed by Andrew Howroyd, Jul 06 2024

A144738 Decimal expansion of constant related to a dynamical system involving the zeta function.

Original entry on oeis.org

5, 1, 2, 7, 3, 7, 9, 1, 5, 4, 5, 4, 9, 6, 9, 3, 3, 5, 3, 2, 9, 2, 2, 7, 0, 9, 9, 7, 0, 6, 0, 7, 5, 2, 9, 5, 1, 2, 4, 0, 4, 8, 2, 8, 4, 8, 4, 5, 6, 3, 7, 1, 9, 3, 6, 6, 1, 0, 0, 5, 0, 1, 3, 6, 2, 8, 3, 5, 5, 0, 4, 7, 7, 6, 5, 5, 9, 4, 4, 5, 7, 4, 1, 2, 2, 5, 9, 9, 1, 5, 9, 9, 8, 8, 8, 3, 0, 9, 6, 9, 0, 1, 6, 0
Offset: 0

Views

Author

Benoit Cloitre, Sep 20 2008

Keywords

Comments

If iterations of zeta function converge to the constant A069857 then the ratio of successive imaginary parts of the orbit converge to -c. I.e., let z(n+1) = zeta(z(n)) if lim_{n->oo} z(n) = A069857; then lim_{n->oo} imag(z(n+1))/imag(z(n)) = -0.512....
-c = zeta'(A069857). - Gerald McGarvey, Feb 22 2009

Examples

			c=0.51273791545496933532922709970607529512404828484563...
		

Crossrefs

Cf. A069857.

Programs

A307065 Decimal expansion of the negative real attracting fixed point of Э(s) = (1 - 2^s) * (1 - 2^(1 - s)) * gamma(s) * zeta(s) * beta(s) / Pi^s.

Original entry on oeis.org

1, 7, 8, 4, 8, 3, 0, 9, 7, 1, 4, 2, 9, 5, 4, 5, 7, 0, 2, 8, 6, 0, 5, 7, 5, 4, 6, 6, 4, 2, 0, 3, 7, 0, 7, 6, 9, 9, 7, 8, 3, 1, 5, 9, 1, 5, 5, 9, 5, 0, 7, 2, 6, 1, 0, 4, 4, 7, 8, 5, 7, 2, 1, 3, 8, 6, 4, 9, 3, 3, 1, 7, 9, 2, 4, 1, 3, 6, 1, 7, 4, 9, 5, 3, 4, 0, 3, 7, 1, 7, 8, 9, 9, 8, 8, 7, 1, 2, 1, 7
Offset: 0

Views

Author

Reikku Kulon, Mar 22 2019

Keywords

Comments

Ossicini's function Э(s) is constructed to remove the poles of gamma(s) and zeta(s) along with the trivial zeros of zeta(s) and (Dirichlet) beta(s). Its zeros include the nontrivial zeros of zeta(s) and beta(s), and complex zeros contributed by (1 - 2^s) and (1 - 2^(1 - s)) at regular intervals of 2*Pi/log(2) on the lines Re(s) = {0, 1}.

Examples

			-0.1784830971429545702860575466420370769978315915595...
		

References

  • A. Ossicini, An alternative form of the functional equation for Riemann's Zeta function, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/09), 95-111.

Crossrefs

Programs

  • Mathematica
    f[s_] := s - (1 - 2^s)(1 - 2^(1-s)) Gamma[s] Zeta[s] ((HurwitzZeta[s, 1/4] - HurwitzZeta[s, 3/4])/(4 Pi)^s);
    s0 = s /. FindRoot[f[s], {s, -1/5}, WorkingPrecision -> 100];
    RealDigits[s0][[1]] (* Jean-François Alcover, May 07 2019 *)
  • PARI
    solve(s = -1/2, -1/8, s - (1 - 2^s) * (1 - 2^(1 - s)) * gamma(s) * zeta(s) * (zetahurwitz(s, 1/4) - zetahurwitz(s, 3/4)) / (4 * Pi)^s)
Showing 1-6 of 6 results.