A069905 Number of partitions of n into 3 positive parts.
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290, 300, 310, 320, 331, 341
Offset: 0
Examples
G.f. = x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 8*x^10 + 10*x^11 + ...
References
- Ross Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39.
- Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 410.
- Donald E. Knuth, The Art of Computer Programming, vol. 4,fascicle 3, Generating All Combinations and Partitions, Section 7.2.1.4., p. 56, exercise 31.
Links
- Washington Bomfim, Table of n, a(n) for n = 0..10000
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Nick Fischer and Christian Ikenmeyer, The Computational Complexity of Plethysm Coefficients, arXiv:2002.00788 [cs.CC], 2020.
- Ross Honsberger, Mathematical Gems III, Math. Assoc. Amer., 1985, p. 39. [Annotated scanned copy]
- J. H. Jordan, R. Walch and R. J. Wisner, Triangles with integer sides, Amer. Math. Monthly, 86 (1979), 686-689.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
Programs
-
GAP
List([0..70],n->NrPartitions(n,3)); # Muniru A Asiru, May 17 2018
-
Haskell
a069905 n = a069905_list !! n a069905_list = scanl (+) 0 a008615_list -- Reinhard Zumkeller, Apr 28 2014
-
Magma
[(n^2+6) div 12: n in [0..70]]; // Vincenzo Librandi, Oct 14 2015
-
Maple
A069905 := n->round(n^2/12): seq(A069905(n), n=0..70);
-
Mathematica
a[ n_]:= Round[ n^2 / 12] (* Michael Somos, Sep 04 2013 *) CoefficientList[Series[x^3/((1-x)(1-x^2)(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 14 2015 *) Drop[LinearRecurrence[{1,1,0,-1,-1,1}, Append[Table[0,{5}],1],70],2] (* Robert A. Russell, May 17 2018 *)
-
PARI
a(n) = floor((n^2+6)/12); \\ Washington Bomfim, Jul 03 2012
-
PARI
my(x='x+O('x^70)); concat([0, 0, 0], Vec(x^3/((1-x)*(1-x^2)*(1-x^3)))) \\ Altug Alkan, Oct 14 2015
-
SageMath
[round(n^2/12) for n in range(70)] # G. C. Greubel, Apr 03 2019
Formula
G.f.: x^3/((1-x)*(1-x^2)*(1-x^3)) = x^3/((1-x)^3*(1+x+x^2)*(1+x)).
a(n) = round(n^2/12).
a(n) = floor((n^2+6)/12). - Washington Bomfim, Jul 03 2012
a(-n) = a(n). - Michael Somos, Sep 04 2013
a(n) = a(n-1) + A008615(n-1) for n > 0. - Reinhard Zumkeller, Apr 28 2014
Let n = 6k + m. Then a(n) = n^2/12 + a(m) - m^2/12. Also, a(n) = 3*k^2 + m*k + a(m). Example: a(35) = a(6*5 + 5) = 35^2/12 + a(5) - 5^2/12 = 102 = 3*5^2 + 5*5 + a(5). - Gregory L. Simay, Oct 13 2015
a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-5) +a(n-6), n>5. - Wesley Ivan Hurt, Oct 16 2015
a(n) = A008284(n,3). - Robert A. Russell, May 13 2018
a(n) = floor((n^2+k)/12) for all integers k such that 3 <= k <= 7. - Giacomo Guglieri, Apr 03 2019
From Wesley Ivan Hurt, Apr 19 2019: (Start)
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} 1.
a(n) = Sum_{i=1..floor(n/3)} floor((n-i)/2) - i + 1. (End)
Sum_{n>=3} 1/a(n) = 15/4 + Pi^2/18 - Pi/(2*sqrt(3)) + tanh(Pi/(2*sqrt(3))) * Pi/sqrt(3). - Amiram Eldar, Sep 27 2022
E.g.f.: (8*exp(-x/2)*cos(sqrt(3)*x/2) + (3*x^2 + 3*x - 8)*cosh(x) + (3*x^2 + 3*x + 1)*sinh(x))/36. - Stefano Spezia, Apr 05 2023
From Ridouane Oudra, Dec 12 2024: (Start)
a(n) = (n^2 + 2*gcd(n,3) - 3*gcd(n,2))/12.
Comments