cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A077644 Number of decimal digits of A070177(n).

Original entry on oeis.org

1, 2, 9, 32, 107, 347, 1108, 3515, 11132, 35219, 111391, 352269, 1113996, 3522791, 11140072, 35228031, 111400846, 352280442, 1114008610, 3522804578, 11140086260
Offset: 0

Views

Author

Labos Elemer, Nov 15 2002

Keywords

Examples

			p(10^3) = 24061467864032622473692149727991 has 32 decimal digits, so a(3) = 32.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press, April 1997, p. 79.

Crossrefs

Cf. A070177.

Programs

  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[10^n]] + 1]; Array[f, 13, 0]
  • PARI
    a(n)=#Str(numbpart(10^n)) \\ Charles R Greathouse IV, Jul 09 2012

Formula

a(n) = (Pi*sqrt(2/3)*sqrt(10)^n-log(48)/2-n*log(10))/log(10) + O(1). - Charles R Greathouse IV, Jul 10 2012

Extensions

a(0), a(10)-a(12), a(15)=35228031 from Robert G. Wilson v, Jun 08 2010
a(13)-a(19) from Charles R Greathouse IV, Jul 09 2012 based on Johansson 2012
a(20) from Robert G. Wilson v, Mar 02 2014

A114170 Numbers n such that p(10n) is prime, where p(n) is the number of partitions of n.

Original entry on oeis.org

44, 1108, 1302, 1504, 1829, 1847, 2267, 2537, 3060, 3289, 3324, 3997, 4138, 6175, 6505, 7266, 9733, 10177, 11483, 12708, 12881, 13632, 14136, 14414, 15917, 16409, 17614, 19133, 19381, 21966, 22967, 30565, 30744, 31655, 33783
Offset: 1

Views

Author

Robert G. Wilson v, Nov 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[20000], PrimeQ[PartitionsP[10# ]] &]
  • PARI
    is(n)=isprime(numbpart(10*n)) \\ Charles R Greathouse IV, Feb 17 2017

A248728 Number of partitions of 3^n.

Original entry on oeis.org

1, 3, 30, 3010, 18004327, 133978259344888, 233202632378520643600875145, 817400077628568283525440629036885986580578161120, 37560309092871894517794668078727801667246369744545646936224413217138060330481863103169
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(3^n): n in [0..8]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    Table[ PartitionsP[ 3^n], {n, 0, 8}]
  • PARI
    a(n) = numbpart(3^n) \\ Michel Marcus, Oct 18 2014

Formula

a(n) = A000041(3^n). - Michel Marcus, Oct 18 2014
a(n) ~ exp(Pi*sqrt(2*3^(n-1)))/(4*3^(n+1/2)). - Ilya Gutkovskiy, Jan 13 2017

Extensions

Added a(0)=1 from Vincenzo Librandi, Oct 13 2014

A129490 Number of digits in the decimal expansion of the number of partitions of 2^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 10, 15, 22, 32, 47, 67, 97, 138, 197, 280, 398, 565, 801, 1134, 1607, 2275, 3219, 4555, 6445, 9118, 12898, 18243, 25803, 36494, 51615, 72998, 103238, 146005, 206486, 292020, 412982, 584050, 825975, 1168110, 1651962, 2336232
Offset: 0

Views

Author

Robert G. Wilson v, Apr 11 2007

Keywords

Comments

For the same sequence but for base 10 (A070177): A077644.

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[2^n]] + 1]; Table[ f@n, {n, 0, 42}]

Formula

See A000041: (Hardy and Ramanujan) & (Ayoub, p. 197).
a(n) = A055642(A068413(n)).
a(n) =~ 2*A129491(n)/9.

Extensions

Missing a(0) prepended by Georg Fischer, Nov 06 2023

A248730 Number of partitions of 5^n.

Original entry on oeis.org

1, 7, 1958, 3163127352, 1606903190858354689128371, 8630901377559029573671524821295260243701883575513498104067
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Comments

Next term is too big to be included.

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(5^n): n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
  • Mathematica
    Table[ PartitionsP[ 5^n], {n, 0, 6}]
  • PARI
    vector(8, n, n--; numbpart(5^n)) \\ Michel Marcus, Oct 13 2014
    

A248732 Number of partitions of 6^n.

Original entry on oeis.org

1, 11, 17977, 15285151248481, 1398703012615213588677365804960180341, 3173477897288016617984809197028065610087051214582584606785402878333070481745149246796102615681
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(6^n): n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
  • Mathematica
    Table[ PartitionsP[ 6^n], {n, 0, 5}]

Formula

A248732 = A000041 o A000400. \\ M. F. Hasler, Oct 16 2014

A248734 Number of partitions of 7^n.

Original entry on oeis.org

1, 15, 173525, 175943559810422753, 229866006383458830949778967121025947053151071434926
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Comments

Next term is too big to be included.

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(7^n): n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    Table[ PartitionsP[ 7^n], {n, 0, 5}]
  • PARI
    a(n) = numbpart(7^n) \\ Michel Marcus, Oct 18 2014

Formula

a(n) = A000041(7^n). - Michel Marcus, Oct 18 2014

A347615 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 22, 30, 5, 1, 1, 1, 231, 3010, 231, 7, 1, 1, 1, 8349, 18004327, 1741630, 1958, 11, 1, 1, 1, 1741630, 133978259344888, 365749566870782, 3163127352, 17977, 15, 1, 1, 1, 4351078600, 233202632378520643600875145, 61847822068260244309086870983975, 1606903190858354689128371, 15285151248481, 173525, 22, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,       1,               1, ...
  1, 1,   1,       1,               1, ...
  1, 2,   5,      22,             231, ...
  1, 3,  30,    3010,        18004327, ...
  1, 5, 231, 1741630, 365749566870782, ...
		

Crossrefs

Columns k=0..3 give A000012, A000041, A072213, A128854.
Rows n=0+1, 2-10 give A000012, A068413, A248728, A068413(2*n), A248730, A248732, A248734, A068413(3*n), A248728(2*n), A070177.
Main diagonal gives A347607.

Programs

  • PARI
    T(n, k) = numbpart(n^k);

Formula

T(n,k) = A000041(n^k).

A038601 Prime numbers p such that the number of partitions of p is also a prime.

Original entry on oeis.org

2, 3, 5, 13, 157, 491, 863, 1621, 2633, 5347, 8117, 13513, 35227, 62311, 76367, 84017, 141637, 170537, 189353, 192667, 201821, 216617, 251677, 269257, 288203, 293621, 353807, 366103, 367621, 372023, 441703, 444167, 478571, 518657, 582371, 626333, 780707, 816521
Offset: 1

Views

Author

Keywords

Examples

			5 = (1+1+1+1+1+1,1+1+1+2,1+1+3,1+4,1+2+2,2+3,5), so partition(5) = 7; 5 and 7 are primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[n] && PrimeQ[ PartitionsP[n]], Print[n]], {n, 1, 10^5} ]

Extensions

More terms from Simon Plouffe
More terms from Robert G. Wilson v, Aug 29 2001
a(17)-a(36) from Jacques Tramu, Jun 26 2005
Corrected by T. D. Noe, Oct 31 2006
Offset changed and a(37)-a(38) from Michael S. Branicky, Jun 24 2025

A069878 Number of partitions of 10^n into distinct parts.

Original entry on oeis.org

1, 10, 444793, 8635565795744155161506, 1122606574548038398976040173670530159089991444775125551802871247408332723840
Offset: 0

Views

Author

Robert G. Wilson v, May 03 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ PartitionsQ[10^n], {n, 0, 4}]
  • PARI
    a(n) = polcoef(prod(k=1, 10^n, 1+x^k+x*O(x^(10^n))), 10^n); \\ Seiichi Manyama, Sep 10 2021

Formula

a(n) = A000009(A011557(n)). - Michel Marcus, Sep 10 2021
Showing 1-10 of 13 results. Next