cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A070933 Expansion of Product_{k>=1} 1/(1 - 2*t^k).

Original entry on oeis.org

1, 2, 6, 14, 34, 74, 166, 350, 746, 1546, 3206, 6550, 13386, 27114, 54894, 110630, 222794, 447538, 898574, 1801590, 3610930, 7231858, 14480654, 28983246, 58003250, 116054034, 232186518, 464475166, 929116402, 1858449178, 3717247638, 7434950062, 14870628026, 29742206138, 59485920374, 118973809798, 237950730522, 475905520474
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 21 2002

Keywords

Comments

See A083355 for a similar formula. - Thomas Wieder, May 07 2008
Partitions of n into 2 sorts of parts: the parts are unordered, but not the sorts; see example and formula by Wieder. - Joerg Arndt, Apr 28 2013
Convolution inverse of A070877. - George Beck, Dec 02 2018
Number of conjugacy classes of n X n matrices over GF(2). Cf. Morrison link, section 2.9. - Geoffrey Critzer, May 26 2021

Examples

			From _Joerg Arndt_, Apr 28 2013: (Start)
There are a(3)=14 partitions of 3 with 2 ordered sorts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:1  1:0  1:0  ]
06:  [ 1:1  1:0  1:1  ]
07:  [ 1:1  1:1  1:0  ]
08:  [ 1:1  1:1  1:1  ]
09:  [ 2:0  1:0  ]
10:  [ 2:0  1:1  ]
11:  [ 2:1  1:0  ]
12:  [ 2:1  1:1  ]
13:  [ 3:0  ]
14:  [ 3:1  ]
(End)
		

Crossrefs

Cf. A083355.
Column k=2 of A246935.
Cf. A048651.
Row sums of A256193.
Antidiagonal sums of A322210.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-2*x^k): k in [1..m]]) )); // G. C. Greubel, Oct 31 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    CoefficientList[ Series[ Product[1 / (1 - 2t^k), {k, 1, 35}], {t, 0, 35}], t]
    CoefficientList[Series[E^Sum[2^k*x^k / (k*(1-x^k)), {k,1,30}],{x,0,30}],x] (* Vaclav Kotesovec, Sep 09 2014 *)
    (O[x]^20 - 1/QPochhammer[2,x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    N=66; q='q+O('q^N); Vec(1/sum(n=0, N, (-2)^n*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
    

Formula

a(n) = (1/n)*Sum_{k=1..n} A054598(k)*a(n-k). - Vladeta Jovovic, Nov 23 2002
a(n) is asymptotic to c*2^n where c=3.46253527447396564949732... - Benoit Cloitre, Oct 26 2003. Right value of this constant is c = 1/A048651 = 3.46274661945506361153795734292443116454075790290443839132935303175891543974042... . - Vaclav Kotesovec, Sep 09 2014
Euler transform of A000031(n). - Vladeta Jovovic, Jun 23 2004
a(n) = Sum_{k=1..n} p(n,k)*A000079(k) where p(n,k) = number of integer partitions of n into k parts. - Thomas Wieder, May 07 2008
a(n) = S(n,1), where S(n,m) = 2 + Sum_{k=m..floor(n/2)} 2*S(n-k,k), S(n,n)=2, S(0,m)=1, S(n,m)=0 for n < m. - Vladimir Kruchinin, Sep 07 2014
a(n) = Sum_{lambda,mu,nu} (c^{lambda}{mu,nu})^2, where lambda ranges over all partitions of n, mu and nu range over all partitions satisfying |mu| + |nu| = n, and c^{lambda}{mu,nu} denotes a Littlewood-Richardson coefficient. - Richard Stanley, Nov 16 2014
G.f.: Sum_{i>=0} 2^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018
G.f.: Product_{j>=1} Product_{i>=1} 1/(1-x^(i*j))^A001037(j) given in Morrison link section 2.9. - Geoffrey Critzer, May 26 2021

Extensions

Edited and extended by Robert G. Wilson v, May 25 2002

A292128 Expansion of Product_{k>=1} (1 - 3*x^k).

Original entry on oeis.org

1, -3, -3, 6, 6, 15, -12, -3, -30, -48, 6, -12, 15, 78, 186, -21, 168, 42, 42, -246, -408, -156, -399, -552, -498, -246, 213, 1248, -318, 1608, 1392, 2508, 1482, 2976, -480, -1011, 1500, -1704, -4296, -4206, -8499, -8652, -7626, -7050, -192, -13008, -480, -2118
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Crossrefs

Column k=3 of A292131.
Product_{k>=1} (1 - m*x^k): A010815 (m=1), A070877 (m=2), this sequence (m=3).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1-3*x^n))

Formula

G.f.: Sum_{i>=0} (-3)^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

A292131 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - k*x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -2, 0, 0, 1, -4, -3, 2, 0, 0, 1, -5, -4, 6, 2, 1, 0, 1, -6, -5, 12, 6, 6, 0, 0, 1, -7, -6, 20, 12, 15, -2, 1, 0, 1, -8, -7, 30, 20, 28, -12, 2, 0, 0, 1, -9, -8, 42, 30, 45, -36, -3, -6, 0, 0, 1, -10, -9, 56, 42, 66, -80
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -2, -3, -4, ...
   0, -1, -2, -3, -4, ...
   0,  0,  2,  6, 12, ...
   0,  0,  2,  6, 12, ...
		

Crossrefs

Columns k=0..3 give A000007, A010815, A070877, A292128.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292132.

A292129 Triangle read by rows: T(n,k) = (-2) * T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, -2, 0, -2, 0, -2, 4, 0, -2, 4, 0, -2, 8, 0, -2, 8, -8, 0, -2, 12, -8, 0, -2, 12, -16, 0, -2, 16, -24, 0, -2, 16, -32, 16, 0, -2, 20, -40, 16, 0, -2, 20, -56, 32, 0, -2, 24, -64, 48, 0, -2, 24, -80, 80, 0, -2, 28, -96, 96, -32, 0, -2, 28, -112, 144, -32, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Examples

			First few rows are:
  1;
  0, -2;
  0, -2;
  0, -2,  4;
  0, -2,  4;
  0, -2,  8;
  0, -2,  8,  -8;
  0, -2, 12,  -8;
  0, -2, 12, -16;
  0, -2, 16, -24;
  0, -2, 16, -32, 16.
		

Crossrefs

Row sums give A070877.
Columns 0-1 give A000007, (-1)*A007395.

A349925 Dirichlet g.f.: Product_{k>=2} (1 - 2 * k^(-s)).

Original entry on oeis.org

1, -2, -2, -2, -2, 2, -2, 2, -2, 2, -2, 6, -2, 2, 2, 2, -2, 6, -2, 6, 2, 2, -2, 2, -2, 2, 2, 6, -2, 2, -2, 6, 2, 2, 2, 2, -2, 2, 2, 2, -2, 2, -2, 6, 6, 2, -2, -2, -2, 6, 2, 6, -2, 2, 2, 2, 2, 2, -2, -6, -2, 2, 6, -2, 2, 2, -2, 6, 2, 2, -2, -6, -2, 2, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2021

Keywords

Crossrefs

A352402 Expansion of Product_{k>=1} 1 / (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, -1, -1, -3, -1, -7, -1, -15, 31, -63, 159, -95, 671, -287, 3231, -2975, 15519, -7839, 44191, -34975, 224415, -291999, 863391, -990367, 2927775, -4902047, 12561567, -27225247, 56470687, -102640799, 152153247, -422620319, 877243551, -2278272159, 3357125791
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[Product[1/(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 2^(n - k), {k, 0, n}], {n, 0, 34}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 2^(n-k), where p(n,k) is the number of partitions of n into k parts.
Showing 1-6 of 6 results.