cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 853 results. Next

A334594 Irregular table read by rows: T(n,k) is the binary interpretation of the k-th row of the XOR-triangle with first row generated from the binary expansion of n. 1 <= k <= A070939(n).

Original entry on oeis.org

1, 2, 1, 3, 0, 4, 2, 1, 5, 3, 0, 6, 1, 1, 7, 0, 0, 8, 4, 2, 1, 9, 5, 3, 0, 10, 7, 0, 0, 11, 6, 1, 1, 12, 2, 3, 0, 13, 3, 2, 1, 14, 1, 1, 1, 15, 0, 0, 0, 16, 8, 4, 2, 1, 17, 9, 5, 3, 0, 18, 11, 6, 1, 1, 19, 10, 7, 0, 0, 20, 14, 1, 1, 1, 21, 15, 0, 0, 0
Offset: 1

Views

Author

Peter Kagey, May 07 2020

Keywords

Comments

An XOR-triangle is an inverted 0-1 triangle formed by choosing a top row and having each entry in the subsequent rows be the XOR of the two values above it.
The second column is A038554.

Examples

			Table begins:
   1;
   2, 1;
   3, 0;
   4, 2, 1;
   5, 3, 0;
   6, 1, 1;
   7, 0, 0;
   8, 4, 2, 1;
   9, 5, 3, 0;
  10, 7, 0, 0;
  11, 6, 1, 1;
For the 11th row, the binary expansion of 11 is 1011_2, and the corresponding XOR-triangle is
  1 0 1 1
   1 1 0
    0 1
     1
Reading the rows of this triangle in binary gives 11, 6, 1, 1.
		

Crossrefs

Programs

  • Mathematica
    Array[Prepend[FromDigits[#, 2] & /@ #2, #1] & @@ {#, Rest@ NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]} &, 21] // Flatten (* Michael De Vlieger, May 08 2020 *)
  • PARI
    row(n) = {my(b=binary(n), v=vector(#b)); v[1] = n; for (n=1, #b-1, b = vector(#b-1, k, bitxor(b[k], b[k+1])); v[n+1] = fromdigits(b, 2);); v;} \\ Michel Marcus, May 08 2020

A030530 n appears A070939(n) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a030530 n = a030530_list !! (n-1)
    a030530_list = 0 : concatMap (\n -> unfoldr
       (\x -> if x == 0 then Nothing else Just (n, div x 2)) n) [1..]
    -- Reinhard Zumkeller, Dec 05 2011
  • Mathematica
    Join[{0},Table[Table[n,IntegerLength[n,2]],{n,30}]]//Flatten (* Harvey P. Dale, Oct 20 2016 *)

Formula

A030190(n) = T(a(n), A083652(a(n))-n-1), T as defined in A083651.
a(A083652(k)) = k+1.
Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=1} (-1)^(n+1)/A053738(n) = 0.90457767... . - Amiram Eldar, Feb 18 2024

A214489 Numbers m such that A070939(m) = A070939(m + A070939(m)), A070939 = length of binary representation.

Original entry on oeis.org

0, 4, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2012

Keywords

Comments

A070939(a(n))=A103586(a(n)) and also A105025(a(n))=A105029(a(n)).

Programs

  • Haskell
    a214489 n = a214489_list !! (n-1)
    a214489_list = [x | x <- [0..], a070939 x == a103586 x]
    -- .

A344834 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) AND (k * 2^max(0, w(n)-w(k))) (where AND denotes the bitwise AND operator and w = A070939).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 4, 2, 2, 4, 0, 0, 4, 4, 3, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 4, 0, 0, 8, 4, 6, 4, 4, 6, 4, 8, 0, 0, 8, 8, 6, 4, 5, 4, 6, 8, 8, 0, 0, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 0, 0, 8, 8, 8, 8, 5, 6, 5, 8, 8, 8, 8, 0
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise AND operator.

Examples

			Array T(n, k) begins:
  n\k|  0  1  2   3  4   5   6   7  8  9  10  11  12  13  14  15
  ---+----------------------------------------------------------
    0|  0  0  0   0  0   0   0   0  0  0   0   0   0   0   0   0
    1|  0  1  2   2  4   4   4   4  8  8   8   8   8   8   8   8
    2|  0  2  2   2  4   4   4   4  8  8   8   8   8   8   8   8
    3|  0  2  2   3  4   4   6   6  8  8   8   8  12  12  12  12
    4|  0  4  4   4  4   4   4   4  8  8   8   8   8   8   8   8
    5|  0  4  4   4  4   5   4   5  8  8  10  10   8   8  10  10
    6|  0  4  4   6  4   4   6   6  8  8   8   8  12  12  12  12
    7|  0  4  4   6  4   5   6   7  8  8  10  10  12  12  14  14
    8|  0  8  8   8  8   8   8   8  8  8   8   8   8   8   8   8
    9|  0  8  8   8  8   8   8   8  8  9   8   9   8   9   8   9
   10|  0  8  8   8  8  10   8  10  8  8  10  10   8   8  10  10
   11|  0  8  8   8  8  10   8  10  8  9  10  11   8   9  10  11
   12|  0  8  8  12  8   8  12  12  8  8   8   8  12  12  12  12
   13|  0  8  8  12  8   8  12  12  8  9   8   9  12  13  12  13
   14|  0  8  8  12  8  10  12  14  8  8  10  10  12  12  14  14
   15|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  15
		

Crossrefs

Cf. A344835 (OR), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).

Programs

  • PARI
    T(n,k,op=bitand,w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = A053644(n).

A344835 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) OR (k * 2^max(0, w(n)-w(k))) (where OR denotes the bitwise OR operator and w = A070939).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 7, 6, 7, 4, 7, 6, 7, 8, 9, 8, 7, 6, 5, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 12, 7, 7, 7, 7, 12, 9, 10, 11, 12, 11, 10, 13, 8, 7, 6, 7, 8, 13, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise OR operator.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+----------------------------------------------------------------
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    1|   1   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    2|   2   2   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    3|   3   3   3   3   6   7   6   7  12  13  14  15  12  13  14  15
    4|   4   4   4   6   4   5   6   7   8   9  10  11  12  13  14  15
    5|   5   5   5   7   5   5   7   7  10  11  10  11  14  15  14  15
    6|   6   6   6   6   6   7   6   7  12  13  14  15  12  13  14  15
    7|   7   7   7   7   7   7   7   7  14  15  14  15  14  15  14  15
    8|   8   8   8  12   8  10  12  14   8   9  10  11  12  13  14  15
    9|   9   9   9  13   9  11  13  15   9   9  11  11  13  13  15  15
   10|  10  10  10  14  10  10  14  14  10  11  10  11  14  15  14  15
   11|  11  11  11  15  11  11  15  15  11  11  11  11  15  15  15  15
   12|  12  12  12  12  12  14  12  14  12  13  14  15  12  13  14  15
   13|  13  13  13  13  13  15  13  15  13  13  15  15  13  13  15  15
   14|  14  14  14  14  14  14  14  14  14  15  14  15  14  15  14  15
   15|  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15
		

Crossrefs

Cf. A344834 (AND), A344836 (XOR), A344837 (min), A344838 (max), A344839 (absolute difference).

Programs

  • PARI
    T(n, k, op=bitor, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = max(1, n).

A344836 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = (n * 2^max(0, w(k)-w(n))) XOR (k * 2^max(0, w(n)-w(k))) (where XOR denotes the bitwise XOR operator and w = A070939).

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 0, 0, 3, 4, 1, 0, 1, 4, 5, 0, 1, 1, 0, 5, 6, 1, 0, 0, 0, 1, 6, 7, 2, 1, 2, 2, 1, 2, 7, 8, 3, 2, 3, 0, 3, 2, 3, 8, 9, 0, 3, 0, 1, 1, 0, 3, 0, 9, 10, 1, 0, 1, 2, 0, 2, 1, 0, 1, 10, 11, 2, 1, 4, 3, 3, 3, 3, 4, 1, 2, 11, 12, 3, 2, 5, 0, 2, 0, 2, 0, 5, 2, 3, 12
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then apply the bitwise XOR operator.

Examples

			Array T(n, k) begins:
  n\k|   0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
  ---+-------------------------------------------------------
    0|   0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
    1|   1  0  0  1  0  1  2  3  0  1   2   3   4   5   6   7
    2|   2  0  0  1  0  1  2  3  0  1   2   3   4   5   6   7
    3|   3  1  1  0  2  3  0  1  4  5   6   7   0   1   2   3
    4|   4  0  0  2  0  1  2  3  0  1   2   3   4   5   6   7
    5|   5  1  1  3  1  0  3  2  2  3   0   1   6   7   4   5
    6|   6  2  2  0  2  3  0  1  4  5   6   7   0   1   2   3
    7|   7  3  3  1  3  2  1  0  6  7   4   5   2   3   0   1
    8|   8  0  0  4  0  2  4  6  0  1   2   3   4   5   6   7
    9|   9  1  1  5  1  3  5  7  1  0   3   2   5   4   7   6
   10|  10  2  2  6  2  0  6  4  2  3   0   1   6   7   4   5
   11|  11  3  3  7  3  1  7  5  3  2   1   0   7   6   5   4
   12|  12  4  4  0  4  6  0  2  4  5   6   7   0   1   2   3
   13|  13  5  5  1  5  7  1  3  5  4   7   6   1   0   3   2
   14|  14  6  6  2  6  4  2  0  6  7   4   5   2   3   0   1
   15|  15  7  7  3  7  5  3  1  7  6   5   4   3   2   1   0
		

Crossrefs

Cf. A344834 (AND), A344835 (OR), A344837 (min), A344838 (max), A344839 (absolute difference).

Programs

  • PARI
    T(n, k, op=bitxor, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(n, n) = 0.
T(n, 0) = n.
T(n, 1) = A053645(n) for any n > 0.

A344837 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = min(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 4, 2, 2, 4, 0, 0, 4, 4, 3, 4, 4, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 4, 4, 5, 4, 5, 4, 4, 0, 0, 8, 4, 6, 4, 4, 6, 4, 8, 0, 0, 8, 8, 6, 4, 5, 4, 6, 8, 8, 0, 0, 8, 8, 8, 4, 5, 5, 4, 8, 8, 8, 0, 0, 8, 8, 9, 8, 5, 6, 5, 8, 9, 8, 8, 0
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the least value.

Examples

			Array T(n, k) begins:
  n\k|  0  1  2   3  4   5   6   7  8  9  10  11  12  13  14  15
  ---+----------------------------------------------------------
    0|  0  0  0   0  0   0   0   0  0  0   0   0   0   0   0   0
    1|  0  1  2   2  4   4   4   4  8  8   8   8   8   8   8   8
    2|  0  2  2   2  4   4   4   4  8  8   8   8   8   8   8   8
    3|  0  2  2   3  4   5   6   6  8  9  10  11  12  12  12  12
    4|  0  4  4   4  4   4   4   4  8  8   8   8   8   8   8   8
    5|  0  4  4   5  4   5   5   5  8  9  10  10  10  10  10  10
    6|  0  4  4   6  4   5   6   6  8  9  10  11  12  12  12  12
    7|  0  4  4   6  4   5   6   7  8  9  10  11  12  13  14  14
    8|  0  8  8   8  8   8   8   8  8  8   8   8   8   8   8   8
    9|  0  8  8   9  8   9   9   9  8  9   9   9   9   9   9   9
   10|  0  8  8  10  8  10  10  10  8  9  10  10  10  10  10  10
   11|  0  8  8  11  8  10  11  11  8  9  10  11  11  11  11  11
   12|  0  8  8  12  8  10  12  12  8  9  10  11  12  12  12  12
   13|  0  8  8  12  8  10  12  13  8  9  10  11  12  13  13  13
   14|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  14
   15|  0  8  8  12  8  10  12  14  8  9  10  11  12  13  14  15
		

Crossrefs

Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344838 (max), A344839 (absolute difference).

Programs

  • PARI
    T(n, k, op=min, w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = 0.
T(n, 1) = A053644(n).

A344838 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = max(n * 2^max(0, w(k)-w(n)), k * 2^max(0, w(n)-w(k))) (where w = A070939).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 7, 6, 6, 4, 6, 6, 7, 8, 9, 8, 7, 6, 5, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 12, 7, 6, 6, 7, 12, 9, 10, 11, 12, 11, 10, 12, 8, 7, 6, 7, 8, 12, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the greatest value.

Examples

			Array T(n, k) begins:
  n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+----------------------------------------------------------------
    0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    1|   1   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    2|   2   2   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    3|   3   3   3   3   6   6   6   7  12  12  12  12  12  13  14  15
    4|   4   4   4   6   4   5   6   7   8   9  10  11  12  13  14  15
    5|   5   5   5   6   5   5   6   7  10  10  10  11  12  13  14  15
    6|   6   6   6   6   6   6   6   7  12  12  12  12  12  13  14  15
    7|   7   7   7   7   7   7   7   7  14  14  14  14  14  14  14  15
    8|   8   8   8  12   8  10  12  14   8   9  10  11  12  13  14  15
    9|   9   9   9  12   9  10  12  14   9   9  10  11  12  13  14  15
   10|  10  10  10  12  10  10  12  14  10  10  10  11  12  13  14  15
   11|  11  11  11  12  11  11  12  14  11  11  11  11  12  13  14  15
   12|  12  12  12  12  12  12  12  14  12  12  12  12  12  13  14  15
   13|  13  13  13  13  13  13  13  14  13  13  13  13  13  13  14  15
   14|  14  14  14  14  14  14  14  14  14  14  14  14  14  14  14  15
   15|  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15
		

Crossrefs

Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344837 (min), A344839 (absolute difference).

Programs

  • PARI
    T(n,k,op=max,w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = n.
T(n, 1) = max(1, n).

A344839 Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = abs(n * 2^max(0, w(k)-w(n)) - k * 2^max(0, w(n)-w(k))) (where w = A070939).

Original entry on oeis.org

0, 1, 1, 2, 0, 2, 3, 0, 0, 3, 4, 1, 0, 1, 4, 5, 0, 1, 1, 0, 5, 6, 1, 0, 0, 0, 1, 6, 7, 2, 1, 2, 2, 1, 2, 7, 8, 3, 2, 1, 0, 1, 2, 3, 8, 9, 0, 3, 0, 1, 1, 0, 3, 0, 9, 10, 1, 0, 1, 2, 0, 2, 1, 0, 1, 10, 11, 2, 1, 4, 3, 1, 1, 3, 4, 1, 2, 11, 12, 3, 2, 3, 0, 2, 0, 2, 0, 3, 2, 3, 12
Offset: 0

Views

Author

Rémy Sigrist, May 29 2021

Keywords

Comments

In other words, we right pad the binary expansion of the lesser of n and k with zeros (provided it is positive) so that both numbers have the same number of binary digits, and then take the absolute difference.

Examples

			Array T(n, k) begins:
  n\k|   0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
  ---+-------------------------------------------------------
    0|   0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
    1|   1  0  0  1  0  1  2  3  0  1   2   3   4   5   6   7
    2|   2  0  0  1  0  1  2  3  0  1   2   3   4   5   6   7
    3|   3  1  1  0  2  1  0  1  4  3   2   1   0   1   2   3
    4|   4  0  0  2  0  1  2  3  0  1   2   3   4   5   6   7
    5|   5  1  1  1  1  0  1  2  2  1   0   1   2   3   4   5
    6|   6  2  2  0  2  1  0  1  4  3   2   1   0   1   2   3
    7|   7  3  3  1  3  2  1  0  6  5   4   3   2   1   0   1
    8|   8  0  0  4  0  2  4  6  0  1   2   3   4   5   6   7
    9|   9  1  1  3  1  1  3  5  1  0   1   2   3   4   5   6
   10|  10  2  2  2  2  0  2  4  2  1   0   1   2   3   4   5
   11|  11  3  3  1  3  1  1  3  3  2   1   0   1   2   3   4
   12|  12  4  4  0  4  2  0  2  4  3   2   1   0   1   2   3
   13|  13  5  5  1  5  3  1  1  5  4   3   2   1   0   1   2
   14|  14  6  6  2  6  4  2  0  6  5   4   3   2   1   0   1
   15|  15  7  7  3  7  5  3  1  7  6   5   4   3   2   1   0
		

Crossrefs

Cf. A344834 (AND), A344835 (OR), A344836 (XOR), A344837 (min), A344838 (max).

Programs

  • PARI
    T(n,k,op=(x,y)->abs(x-y),w=m->#binary(m)) = { op(n*2^max(0, w(k)-w(n)), k*2^max(0, w(n)-w(k))) }

Formula

T(n, k) = T(k, n).
T(n, n) = 0.
T(n, 0) = n.
T(n, 1) = A053645(n) for any n > 0.

A266197 Indices of "good matches" produced by match-making permutation A266195; numbers n for which A070939(A266195(n)) = A070939(A266195(n+1)), where A070939(n) gives the length of base-2 representation of n.

Original entry on oeis.org

2, 4, 5, 9, 10, 18, 19, 26, 34, 37, 38, 58, 61, 62, 66, 67, 129, 130, 133, 137, 138, 158, 286, 287, 290, 292, 301, 302, 311, 318, 365, 366, 371, 379, 382, 384, 561, 562, 563, 627, 628, 629, 630, 631, 633, 639, 644, 646, 680, 683, 688, 767, 768, 775, 776, 777, 778, 780, 913, 914, 915, 918, 919, 920, 923, 924, 925, 926, 927, 928, 930, 931, 932, 933, 939, 1315
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2015

Keywords

Comments

Numbers n for which A264982(n) = A264982(n+1).
It would be nice to know whether this sequence is infinite.

Crossrefs

Cf. A265748, A265749 (give the first and second members of pairs indexed by this sequence).
Showing 1-10 of 853 results. Next