cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A071695 Lesser members of twin prime pairs of form (4*k+1, 4*k+3), k > 0.

Original entry on oeis.org

5, 17, 29, 41, 101, 137, 149, 197, 269, 281, 461, 521, 569, 617, 641, 809, 821, 857, 881, 1049, 1061, 1229, 1277, 1289, 1301, 1481, 1697, 1721, 1877, 1949, 1997, 2081, 2129, 2141, 2237, 2309, 2381, 2549, 2657, 2729, 2789, 2801, 2969
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Comments

Corresponding greater members: A071696(n).
Or, lesser members of twin prime pairs (A001359) which are also Pythagorean primes (A002144). Intersection of A001359 and A002144. - Zak Seidov, Apr 25 2008
A010051(a(n)) * A010051(a(n)+2) = 1. - Reinhard Zumkeller, Nov 10 2013

Crossrefs

Programs

  • Haskell
    a071695 n = a071695_list !! (n-1)
    a071695_list = [p | p <- a002144_list, a010051' (p + 2) == 1]
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Select[ Prime@ Range@ 1000, Mod[#, 4] == 1 && PrimeQ[# + 2] &] (* Robert G. Wilson v, Jan 22 2012 *)
  • PARI
    p=2;forprime(q=3,1e4,if(q-p==2 && p%4==1, print1(p", "));p=q) \\ Charles R Greathouse IV, Mar 20 2013
    

A072010 In prime factorization of n replace all primes of form k*4+1 with k*4+3 and primes of form k*4+3 with k*4+1.

Original entry on oeis.org

1, 2, 1, 4, 7, 2, 5, 8, 1, 14, 9, 4, 15, 10, 7, 16, 19, 2, 17, 28, 5, 18, 21, 8, 49, 30, 1, 20, 31, 14, 29, 32, 9, 38, 35, 4, 39, 34, 15, 56, 43, 10, 41, 36, 7, 42, 45, 16, 25, 98, 19, 60, 55, 2, 63, 40, 17, 62, 57, 28, 63, 58, 5, 64, 105, 18, 65, 76, 21, 70, 69
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 05 2002

Keywords

Comments

a(3^n) = 1; a(2^n) = 2^n;
a(n)>2 is prime iff n=m*3^i (i>=0), a(n)=a(m) and (m,a(m)) or (a(m),m) is a twin prime pair of form ((4*k+1),(4*k+3)), a(m)*m=A071697(j)=A071695(j)*A071696(j) for some j.

Examples

			a(26928) = a(2^4*3^2*11*17) = a(2)^4 * a(3)^2 * a(11) * a(17)
= 2^4 * 1^2 * 9 * 19 = 2736.
		

Crossrefs

Cf. A002144, A002145, A072012(n) = a(a(n)).
For a(n) = n see A072011.
Cf. A027746.

Programs

  • Haskell
    a072010 1 = 1
    a072010 n = product $ map f $ a027746_row n where
       f 2 = 2
       f p = p + 2 * (2 - p `mod` 4)
    -- Reinhard Zumkeller, Apr 09 2012
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p + 2*(2 - Mod[p, 4]); a[n_] := Times @@ (a[#[[1]]]^#[[2]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 04 2012 *)

Formula

Multiplicative with a(p) = p + 2*(2 - p mod 4), p prime.

A071697 Product of twin primes of form (4*k+1,4*k+3), k>0.

Original entry on oeis.org

35, 323, 899, 1763, 10403, 19043, 22499, 39203, 72899, 79523, 213443, 272483, 324899, 381923, 412163, 656099, 675683, 736163, 777923, 1102499, 1127843, 1512899, 1633283, 1664099, 1695203, 2196323, 2883203, 2965283, 3526883, 3802499, 3992003, 4334723, 4536899
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Crossrefs

Programs

  • Magma
    [16*n^2+16*n+3: n in [1..700]| IsPrime(4*n+1) and IsPrime(4*n+3)]; // Vincenzo Librandi, Feb 24 2015
  • PARI
    lista(nn) = {forprime(p=3, nn, if ((((p-1) % 4) == 0) && isprime(p+2), print1(p*(p+2), ", ")););} \\ Michel Marcus, Feb 24 2015
    

Formula

a(n) = A071695(n)*A071696(n).

Extensions

More terms from Michel Marcus, Feb 24 2015

A071699 Greater members of twin prime pairs of form (4*k+3, 4*k+5), k >= 0.

Original entry on oeis.org

5, 13, 61, 73, 109, 181, 193, 229, 241, 313, 349, 421, 433, 601, 661, 829, 1021, 1033, 1093, 1153, 1321, 1429, 1453, 1489, 1609, 1621, 1669, 1789, 1873, 1933, 2029, 2089, 2113, 2269, 2341, 2593, 2689, 2713, 3001, 3121, 3169, 3253, 3301
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Comments

Corresponding lesser members: A071698(n).

Crossrefs

Cf. A010051, subsequence of A016813.
Intersection of A006512 and A002144.

Programs

  • Haskell
    a071699 n = a071699_list !! (n-1)
    a071699_list = [x | x <- [5, 9 ..], a010051' x == 1, a010051' (x-2) == 1]
    -- Reinhard Zumkeller, Aug 05 2014
    
  • Magma
    [4*(k+1)+1:k in [0..1000]|IsPrime(4*k+3) and IsPrime(4*k+5)]; // Marius A. Burtea, Nov 06 2019
  • Mathematica
    #+2&/@Select[4Range[0,850]+3,PrimeQ[#]&&PrimeQ[#+2]&] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = 2*A241557(n+1) + 1. - Hilko Koning, Nov 06 2019

A072028 Swap twin prime pairs of form (4*k+1,4*k+3) in prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 11, 12, 13, 10, 21, 16, 19, 18, 17, 28, 15, 22, 23, 24, 49, 26, 27, 20, 31, 42, 29, 32, 33, 38, 35, 36, 37, 34, 39, 56, 43, 30, 41, 44, 63, 46, 47, 48, 25, 98, 57, 52, 53, 54, 77, 40, 51, 62, 59, 84, 61, 58, 45, 64, 91, 66
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 07 2002

Keywords

Examples

			a(65) = a(5*13) = a(5)*a(13) = a(4*1+1)*a(13) = (4*1+3)*13 = 7*13 = 91.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, p, If[(m = Mod[p, 4]) == 1 && PrimeQ[p + 2], p + 2, If[m == 3 && PrimeQ[p - 2], p - 2, p]]]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 26 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; if(p < 5, p, if(p%4 == 1 && isprime(p+2), p+2, if(p%4 == 3 && isprime(p-2), p-2, p)))^f[i,2]);} \\ Amiram Eldar, Feb 26 2024

Formula

Multiplicative with a(p) = (if p mod 4 = 1 and p+2 is prime then p+2 else (if p mod 4 = 3 and p-2 is prime then p-2 else p)), p prime.
a(a(n)) = n, a self-inverse permutation of natural numbers.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{(p < q) swapped pair} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 1.0627249749498993391... . - Amiram Eldar, Feb 26 2024

A082542 a(n) = prime(n) + 2 - (prime(n) mod 4).

Original entry on oeis.org

2, 2, 6, 6, 10, 14, 18, 18, 22, 30, 30, 38, 42, 42, 46, 54, 58, 62, 66, 70, 74, 78, 82, 90, 98, 102, 102, 106, 110, 114, 126, 130, 138, 138, 150, 150, 158, 162, 166, 174, 178, 182, 190, 194, 198, 198, 210, 222, 226, 230, 234, 238, 242, 250, 258, 262, 270, 270, 278
Offset: 1

Views

Author

Reinhard Zumkeller, May 02 2003

Keywords

Comments

For k > 1: a(k+1) = a(k) if and only if prime(k) == 1 modulo 4 and prime(k+1) = prime(k) + 2, see A071695 and A071696.

Examples

			a(2) = 2 because the second prime is 3, and 3 + 2 - 3 = 2.
a(3) = 6 because the third prime is 5, and 5 + 2 - 1 = 6.
a(4) = 6 because the fourth prime is 7, and 7 + 2 - 3 = 6.
		

Crossrefs

Programs

  • Magma
    [2 + NthPrime(n) - (NthPrime(n) mod 4): n in [1..60]]; // G. C. Greubel, Nov 14 2018
  • Mathematica
    Table[Prime[n] + 2 - Mod[Prime[n], 4], {n, 60}] (* Alonso del Arte, Feb 23 2015 *)
    #+2-Mod[#,4]&/@Prime[Range[60]] (* Harvey P. Dale, Aug 24 2025 *)
  • PARI
    vector(60, n, 2 + prime(n) - lift(Mod(prime(n),4))) \\ G. C. Greubel, Nov 14 2018
    

Formula

a(n) = A000040(n) + A070750(n).
a(n+1) = p + (-1/p) = p + (-1)^((p-1)/2), where p is the n-th odd prime and (-1/p) denotes the value of Legendre symbol. - Lekraj Beedassy, Mar 17 2005
a(n) = (A000040(n) OR 3) - 1. - Jon Maiga, Nov 14 2018
From Amiram Eldar, Dec 24 2022: (Start)
a(n) = A100484(n) - A076342(n).
Product_{n>=1} a(n)/prime(n) = 2/Pi (A060294). (End)

A072011 Numbers k such that A072010(k) = k.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 35, 64, 70, 128, 140, 256, 280, 323, 512, 560, 646, 899, 1024, 1120, 1225, 1292, 1763, 1798, 2048, 2240, 2450, 2584, 3526, 3596, 4096, 4480, 4900, 5168, 7052, 7192, 8192, 8960, 9800, 10336, 10403, 11305
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 05 2002

Keywords

Comments

If A072010(n) = n then also A072010(n*3^i) = n and A072010(n*2^j) = n*2^j.
For m=(4*k+1)*(4*k+3), product of twin prime pairs: A072010(m) = m, as well as for values m in the free monoid generated by the range of A071697.

Examples

			395675 is a term as f(395675) = f(323*1225) = f((17*19)*(5*7)^2) = f(17*19)*(f(5*7))^2 = f(17)*f(19)*(f(5)*f(7))^2 = 19*17*(7*5)^2 = 323*1225 = 395675 for f = A072010.
		

Crossrefs

A071701 Number of twin prime pairs <= n of form (4*k+1,4*k+3), k>0.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 04 2002

Keywords

Comments

As for A071538 the convention is followed that a twin prime pair is <= n if its smaller member is <= n.

Examples

			a(30)=3, since (29,31) is included along with (5,7) and (17,19).
		

Crossrefs

a(n) = A071538(n) - A071702(n), cf. A071695, A071696.

A074395 A 7-way classification of the primes.

Original entry on oeis.org

6, 1, 0, 5, 1, 4, 0, 5, 3, 0, 3, 4, 0, 5, 3, 2, 1, 2, 5, 1, 2, 5, 3, 4, 4, 0, 5, 1, 4, 2, 5, 3, 0, 3, 0, 3, 2, 5, 3, 2, 1, 2, 1, 4, 0, 5, 5, 5, 1, 4, 2, 1, 2, 3, 2, 3, 0, 3, 4, 0, 3, 2, 5, 1, 4, 2, 3, 2, 1, 4, 2, 5, 3, 2, 5, 3, 4, 4, 4, 2, 1, 2, 1, 2, 5, 3, 4, 4, 0, 5, 5, 5, 5, 5, 5, 3, 4, 0, 3, 2, 3, 2, 3, 0, 3
Offset: 1

Views

Author

Roger L. Bagula, Sep 24 2002

Keywords

Comments

There are seven types of consecutive primes modulus 4 and whether or not they are twin primes. They are a (1, 3, paired), (3, 1, paired), (1, 3, not paired), (3, 1, not paired), (1, 1), (3, 3) and p(m)=2. Each case is mapped to a number from zero to six, respectively. Here the word paired means that the consecutive primes are twins.
The initial digit (6) occurs but once and the frequency for the digits 0 and 1 decreased with added terms.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[p = Prime[n]; q = Prime[n + 1]; a = Append[a, Which[ Mod[p, 4] == 1 && Mod[q, 4] == 3 && p + 2 == q, 0, Mod[p, 4] == 3 && Mod[q, 4] == 1 && p + 2 == q, 1, Mod[p, 4] == 1 && Mod[q, 4] == 3 && p + 2 != q, 2, Mod[p, 4] == 3 && Mod[q, 4] == 1 && p + 2 != q, 3, Mod[p, 4] == 1 && Mod[q, 4] == 1, 4, Mod[p, 4] == 3 && Mod[q, 4] == 3, 5, p == 2, 6]]; p = q, {n, 1, 105}]; a

Extensions

Edited and extended by Robert G. Wilson v, Oct 03 2002
Showing 1-9 of 9 results.