cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A092737 Duplicate of A072669.

Original entry on oeis.org

7, 11, 17, 23, 29, 41, 59, 67, 83, 89, 127, 137, 151, 197, 239, 257, 307, 359, 383, 389
Offset: 1

Views

Author

Keywords

A224748 Given n-th prime p, a(n) = number of primes of the form p + q - 1 where q is any prime < p.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 3, 2, 3, 6, 6, 5, 8, 4, 4, 4, 11, 11, 8, 9, 11, 4, 5, 13, 9, 11, 7, 13, 5, 17, 10, 9, 15, 7, 19, 17, 18, 10, 8, 8, 25, 12, 17, 12, 18, 29, 23, 12, 21, 12, 15, 28, 18, 11, 11, 12, 32, 25, 19, 22, 14, 29, 17, 27, 14, 40, 36, 18, 29, 16, 13
Offset: 1

Views

Author

Jayanta Basu, Apr 17 2013

Keywords

Comments

Conjecture: a(n)>0 for all n>2. - Dmitry Kamenetsky, Feb 09 2017

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(isprime(ithprime(n)+ithprime(i)-1), 1, 0), i=1..n-1):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 18 2013
  • Mathematica
    Table[p = Prime[n]; c = 0; i = 1; While[i < n, If[PrimeQ[p + Prime[i] - 1], c = c + 1]; i++]; c, {n, 72}]
    Table[Count[Prime[n]+Prime[Range[n-1]]-1,?PrimeQ],{n,80}] (* _Harvey P. Dale, Nov 04 2020 *)

A092738 Primes of the form prime(x)+prime(x+1)+1.

Original entry on oeis.org

13, 19, 31, 37, 43, 53, 61, 79, 101, 113, 139, 163, 173, 199, 211, 223, 241, 269, 277, 331, 353, 373, 397, 457, 463, 509, 521, 541, 577, 601, 619, 631, 727, 773, 787, 811, 829, 853, 883, 907, 919, 947, 967, 991, 1013, 1031, 1181, 1193, 1201, 1231, 1237
Offset: 1

Views

Author

Jorge Coveiro, Apr 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Prime[n] + Prime[n + 1] + 1; f[ # ] & /@ Select[ Range[120], PrimeQ[ f[ # ]] &] (* Robert G. Wilson v, Apr 14 2004 *)
  • PARI
    list(lim)=my(v=List(),p=2,t);forprime(q=3,,t=p+q+1;if(t>lim,return(Vec(v)));if(isprime(t),listput(v,t))) \\ Charles R Greathouse IV, Mar 19 2013

Extensions

More terms from Robert G. Wilson v, Apr 14 2004

A072667 Consider m such that prime(m) + prime(m+1) = prime(k) + 1 for some k; sequence gives values of prime(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 29, 31, 41, 43, 61, 67, 73, 97, 113, 127, 151, 179, 191, 193, 199, 211, 223, 229, 239, 241, 271, 277, 281, 293, 307, 317, 337, 349, 367, 373, 379, 397, 401, 409, 419, 431, 439, 463, 487, 523, 541, 547, 577, 613, 619, 641, 643, 659, 683, 701, 709, 727
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Aug 12 2002

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [1..200] | IsPrime(NthPrime(n) + NthPrime(n+1)-1)] // Vincenzo Librandi, Aug 26 2012
  • Mathematica
    Transpose[Select[Partition[Prime[Range[130]], 2, 1], PrimeQ[Total[#]-1]&]] [[1]] (* Harvey P. Dale, Feb 29 2012 *)
    Select[Prime[Range[200]],PrimeQ[#+NextPrime[#]-1]&] (* Vincenzo Librandi, Aug 26 2012 *)

Formula

a(n) = prime(A072666(n)) = A000040(A072666(n)). - Zak Seidov, Dec 08 2014

A072666 Numbers n such that prime(n) + prime(n+1) - 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 18, 19, 21, 25, 30, 31, 36, 41, 43, 44, 46, 47, 48, 50, 52, 53, 58, 59, 60, 62, 63, 66, 68, 70, 73, 74, 75, 78, 79, 80, 81, 83, 85, 90, 93, 99, 100, 101, 106, 112, 114, 116, 117, 120, 124, 126, 127, 129, 130, 131, 132, 137, 138, 140, 145, 147, 149
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Aug 12 2002

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..200] | IsPrime(NthPrime(n) + NthPrime(n+1)-1)] // Vincenzo Librandi, Aug 26 2012
  • Maple
    N:= 10^4: # to get all terms n such that prime(n+1) <= N
    Primes:= select(isprime,[2,seq(2*i+1,i=1..floor(N/2))]):
    PP:= Primes[1..-2]+Primes[2..-1]:
    select(t -> isprime(PP[t]-1), [$1..nops(PP)]); # Robert Israel, Dec 11 2014
  • Mathematica
    Select[Range[200], PrimeQ[Prime[#]+Prime[#+1]-1] &] (* Harvey P. Dale, Dec 16 2010 *)

Formula

a(n) = pi(A072667(n)) = A000720(A072667(n)). - Zak Seidov, Dec 08 2014

Extensions

Definition clarified by Robert Israel, Dec 11 2014

A207990 Primes of the form prime(n) + prime(n+1) - 5.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 47, 73, 79, 107, 139, 157, 167, 181, 193, 199, 211, 263, 271, 283, 347, 367, 379, 457, 467, 487, 503, 571, 613, 619, 643, 691, 757, 823, 859, 877, 887, 919, 941, 997, 1039, 1187, 1231, 1279, 1307, 1423, 1489, 1579, 1601, 1627, 1663
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 200}], PrimeQ]
    Select[Total/@Partition[Prime[Range[200]],2,1]-5,PrimeQ] (* Harvey P. Dale, Apr 05 2020 *)
  • PARI
    p=2;forprime(q=3,1e4,if(isprime(t=p+q-5),print1(t", "));p=q) \\ Charles R Greathouse IV, Apr 13 2012

A227340 Primes of the form p^2 + q^2 - 1 where p and q are consecutive primes.

Original entry on oeis.org

73, 457, 1801, 3049, 3529, 4057, 8209, 10369, 19609, 20809, 33289, 41521, 51217, 84121, 103969, 111409, 115201, 121081, 129049, 141529, 150169, 155689, 180097, 223129, 282769, 308929, 342841, 397849, 426889, 432457, 627217, 649801, 658969, 710449, 729649
Offset: 1

Views

Author

K. D. Bajpai, Jul 07 2013

Keywords

Examples

			a(1) = 5^2 + 7^2 - 1 = 73, which is prime.
		

Crossrefs

Cf. A072669.

Programs

  • Maple
    K := proc(x) local a; a:=ithprime(x)^2+ithprime(x+1)^2-1; if (isprime(a))then RETURN (a) fi: end: seq(K(x), x=1..500); # K. D. Bajpai, Jul 07 2013
    K:=proc()local x,a,c; c:=1; for x from 1 to 5000 do; a:=ithprime(x)^2+ithprime(x+1)^2-1;if isprime(a) then lprint(c,a);c:=c+1;fi;od; end: K(); # K. D. Bajpai, Jul 07 2013
  • Mathematica
    t = {}; Do[p = Prime[n]; q = Prime[n + 1]; p2 = p^2 + q^2 - 1; If[PrimeQ[p2], AppendTo[t, p2]], {n, 200}]; t (* T. D. Noe, Jul 09 2013 *)
  • PARI
    is(n)=if(isprime(n), my(x=sqrtint((n+1)\2)); nextprime(x+1)^2 +precprime(x)^2==n+1 && n>3, 0) \\ Charles R Greathouse IV, Jul 08 2013
    
  • PARI
    p=2;forprime(q=3,1e5,if(isprime(t=p^2+q^2-1),print1(t", "));p=q) \\ Charles R Greathouse IV, Jul 08 2013

A093734 Primes p such that both prime(p) + prime(p+1) +/-1 are also primes.

Original entry on oeis.org

3, 19, 79, 127, 131, 149, 373, 401, 487, 1031, 1303, 1427, 1699, 1801, 2069, 2477, 2659, 2767, 3307, 3391, 3449, 3583, 3671, 3727, 4093, 4423, 4603, 4817, 5081, 5501, 5641, 5737, 5813, 5839, 6619, 7219, 7243, 7351, 7393, 8293, 8543, 8641, 8693, 8699
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 10000 ], PrimeQ[ # ] && PrimeQ[ Prime[ # ] + Prime[ # + 1 ] - 1 ] && PrimeQ[ Prime[ # ] + Prime[ # + 1 ] + 1 ] & ]

A207991 Primes of the form prime(n) + prime(n+1) + 5.

Original entry on oeis.org

13, 17, 23, 29, 41, 47, 73, 83, 89, 149, 157, 167, 191, 227, 263, 281, 293, 313, 389, 401, 439, 461, 467, 563, 569, 653, 673, 701, 757, 857, 877, 887, 911, 929, 971, 983, 1049, 1069, 1093, 1109, 1153, 1213, 1277, 1289, 1433, 1451, 1487, 1499, 1523, 1637
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 200}], PrimeQ]
    Select[Total[#]+5&/@Partition[Prime[Range[300]],2,1],PrimeQ] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    p=2;forprime(q=3,1e4,if(isprime(t=p+q+5),print1(t", "));p=q) \\ Charles R Greathouse IV, Apr 13 2012

A207992 Primes p of the form p = prime(n) + prime(n+1) - 5 and p = prime(k) + prime(k+1) + 5.

Original entry on oeis.org

13, 47, 73, 157, 167, 263, 467, 757, 877, 887, 2027, 2593, 3203, 3733, 4273, 4703, 4787, 5087, 5387, 6373, 6637, 7393, 7823, 8893, 9587, 10007, 10163, 12433, 13933, 15083, 15287, 15373, 16333, 17387, 17483, 18013, 18313, 19237, 19477, 20327, 21467, 23567
Offset: 1

Views

Author

Keywords

Comments

n = k+1 or k+2. - Charles R Greathouse IV, Apr 16 2012

Examples

			3+5+5 = 13 = 7+11-5, 23+29-5 = 47 = 19+23+5
		

Crossrefs

Programs

  • Mathematica
    a1 = Select[Table[Prime[n] + Prime[n + 1] - 5, {n, 2010}], PrimeQ]; a2 = Select[Table[Prime[n] + Prime[n + 1] + 5, {n, 2000}], PrimeQ]; Intersection[a1, a2]
    With[{pr=Transpose[#+{5,-5}&/@Total/@Partition[Prime[Range[3000]],2,1]]}, Select[Intersection[pr[[1]],pr[[2]]], PrimeQ]] (* Harvey P. Dale, Mar 13 2013 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e4,if((r==p+10||r+s==p+q+10) && isprime(p+q+5), print1(p+q+5", "));p=q;q=r;r=s) \\ Charles R Greathouse IV, Apr 16 2012
Showing 1-10 of 14 results. Next