cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A073420 G.f.: 1/B(x) where B(x) = g.f. for A072964.

Original entry on oeis.org

1, -1, -1, -1, 0, -2, -4, -4, -8, -10, -17, -10, 6, 45, 260, 604, 1285, 3329, 6755, 12550, 25790, 46302, 75922, 129739, 188164, 215880, 177637, -208052, -1480885, -4563499, -11984644, -28275270, -61059278, -126088969, -248020723, -462216478, -823834918, -1383451194, -2136524063
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2002

Keywords

Crossrefs

Cf. A072964.

Extensions

More terms from R. J. Mathar, Feb 13 2008

A321507 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)/2))^A072964(k).

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 10, 10, 10, 22, 29, 29, 56, 70, 70, 127, 176, 176, 283, 367, 395, 644, 833, 889, 1315, 1714, 1910, 2791, 3606, 3942, 5538, 7413, 8169, 11100, 14544, 16140, 21927, 28886, 32344, 42152, 54728, 62624, 81625, 105148, 120310, 152699, 197624
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 11 2018

Keywords

Comments

a(n) is the number of partitions of n into triangular numbers k*(k + 1)/2 of A072964(k) kinds.

Examples

			a(6) = 10 because we have [{6}], [{3, 3}],  [{3}, {3}], [{3, 1, 1, 1}], [{3}, {1, 1, 1}], [{3}, {1}, {1}, {1}], [{1, 1, 1, 1, 1, 1}], [{1, 1, 1}, {1, 1, 1}], [{1, 1, 1}, {1}, {1}, {1}] and [{1}, {1}, {1}, {1}, {1}, {1}].
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2)), {k, 1, n}], {x, 0, n (n + 1)/2}]; a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2))^b[k], {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A000217(k))^A007294(A000217(k)).

A037444 Number of partitions of n^2 into squares.

Original entry on oeis.org

1, 1, 2, 4, 8, 19, 43, 98, 220, 504, 1116, 2468, 5368, 11592, 24694, 52170, 108963, 225644, 462865, 941528, 1899244, 3801227, 7550473, 14889455, 29159061, 56722410, 109637563, 210605770, 402165159, 763549779, 1441686280, 2707535748, 5058654069, 9404116777
Offset: 0

Views

Author

Keywords

Comments

Is lim_{n->inf} a(n)^(1/n) > 1? - Paul D. Hanna, Aug 20 2002
The limit above is equal to 1 (see formula by Hardy & Ramanujan for A001156). - Vaclav Kotesovec, Dec 29 2016

Crossrefs

Entries with square index in A001156.
A row or column of the array in A259799.

Programs

  • Haskell
    a037444 n = p (map (^ 2) [1..]) (n^2) where
       p _      0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 14 2011
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i)))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    max=33; se = Series[ Product[1/(1-x^(k^2)), {k, 1, max}], {x, 0, max^2}]; a[n_] := Coefficient[se, x^(n^2)]; a[0] = 1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Oct 18 2011 *)

Formula

a(n) = A001156(n^2) = coefficient of x^(n^2) in the series expansion of Prod_{k>=1} 1/(1 - x^(k^2)).
a(n) ~ 3^(-1/2) * (4*Pi)^(-7/6) * Zeta(3/2)^(2/3) * n^(-7/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3)) [Hardy & Ramanujan, 1917, modified from A001156]. - Vaclav Kotesovec, Dec 29 2016

A288126 Number of partitions of n-th triangular number (A000217) into distinct triangular parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 7, 6, 4, 14, 15, 19, 31, 28, 43, 57, 80, 103, 127, 181, 234, 295, 398, 539, 663, 888, 1178, 1419, 1959, 2519, 3102, 4201, 5282, 6510, 8717, 11162, 13557, 18108, 22965, 28206, 36860, 46350, 58060, 73857, 93541, 117058, 147376, 186158, 232949, 292798, 365639
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Examples

			a(4) = 2 because 4th triangular number is 10 and we have [10], [6, 3, 1].
		

Crossrefs

Programs

  • Maple
    N:= 100:
    G:= mul(1+x^(k*(k+1)/2),k=1..N):
    seq(coeff(G,x,n*(n+1)/2),n=0..N); # Robert Israel, Jun 06 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^(k (k + 1)/2), {k, 1, n}], {x, 0, n (n + 1)/2}], {n, 0, 54}]

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k>=1} (1 + x^(k(k+1)/2)).
a(n) = A024940(A000217(n)).

A298858 Number of ordered ways of writing n-th triangular number as a sum of n nonzero triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 4, 11, 86, 777, 4670, 36075, 279482, 2345201, 21247326, 197065752, 1983741228, 20769081251, 228078253168, 2604226354265, 30880251148086, 379415992755572, 4818158748326064, 63116999199457944, 851467484377802094, 11811530978240316682, 168243449082524484856
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(4) = 4 because fourth triangular number is 10 and we have [3, 3, 3, 1], [3, 3, 1, 3], [3, 1, 3, 3] and [1, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k*(k+1)/2))^n.

A298269 Number of partitions of the n-th tetrahedral number into tetrahedral numbers.

Original entry on oeis.org

1, 1, 2, 4, 11, 29, 94, 304, 1005, 3336, 11398, 38739, 132340, 451086, 1541074, 5242767, 17779666, 60048847, 202124143, 677000711, 2256910444, 7486274436, 24713275977, 81162110629, 265192045408, 862061443031, 2788194736946, 8972104829849, 28726271274133, 91515498561954, 290116750935925
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(3) = 4 because third tetrahedral number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k (k + 1) (k + 2)/6)), {k, 1, n}], {x, 0, n (n + 1) (n + 2)/6}], {n, 0, 30}]

Formula

a(n) = [x^A000292(n)] Product_{k>=1} 1/(1 - x^A000292(k)).
a(n) = A068980(A000292(n)).

A337762 Number of partitions of the n-th n-gonal number into n-gonal numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 21, 56, 144, 370, 926, 2275, 5482, 12966, 30124, 68838, 154934, 343756, 752689, 1627701, 3479226, 7355608, 15390682, 31889732, 65465473, 133212912, 268811363, 538119723, 1069051243, 2108416588, 4129355331, 8033439333
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(3) = 4 because the third triangular number is 6 and we have [6], [3, 3], [3, 1, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[1/(1 - x^(k*((k*(n - 2) - n + 4)/2))), {k, 1, n}], {x, 0, n*(4 - 3*n + n^2)/2}], {n, 0, nmax}] (* Vaclav Kotesovec, Sep 19 2020 *)

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A307614 Number of partitions of the n-th triangular number into consecutive positive triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			A000217(4) = 10 = 1 + 3 + 6, so a(4) = 2.
		

Crossrefs

Formula

a(n) = [x^(n*(n+1)/2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).

A337797 Number of partitions of the n-th n-gonal pyramidal number into n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 198, 858, 3728, 16115, 69125, 292940, 1224628, 5052396, 20570806, 82655098, 327881398, 1284663878, 4973614490, 19034194696, 72037124003, 269723590850, 999517370314, 3667158097572, 13325691939021, 47975192145998
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(3) = 4 because the third tetrahedral (or triangular pyramidal) number is 10 and we have [10], [4, 4, 1, 1], [4, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} 1 / (1 - x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

A299032 Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local i; if n=0 then
          `if`(t=0, 1, 0) elif t<1 then 0 else 0;
          for i while i^2<=n do %+b(n-i^2, t-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k^2))^n.
Showing 1-10 of 15 results. Next