cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102084 a(1) = 0; for n>0, write 2n=p+q (p, q prime), p*q maximal; then a(n)=p*q (see A073046).

Original entry on oeis.org

0, 4, 9, 15, 25, 35, 49, 55, 77, 91, 121, 143, 169, 187, 221, 247, 289, 323, 361, 391, 437, 403, 529, 551, 589, 667, 713, 703, 841, 899, 961, 943, 1073, 1147, 1189, 1271, 1369, 1363, 1517, 1591, 1681, 1763, 1849, 1927, 2021, 1891, 2209, 2279, 2257, 2491
Offset: 1

Views

Author

Michael Taktikos, Feb 16 2005

Keywords

Comments

For n>1, largest semiprime whose sum of prime factors = 2n. Assumes the Goldbach conjecture is true. Also the largest semiprime <= n^2.
Also the greatest integer x such that x' = 2*n, or 0 if there is no such x, where x' is the arithmetic derivative (A003415). Bisection of A099303. The only even number without an anti-derivative is 2. All terms are <= n^2, with equality only when n is prime. In fact a(n) = n^2 - k^2, where k is the least number such that both n-k and n+k are prime; k = A047160(n). It appears that the anti-derivatives of even numbers are overwhelmingly semiprimes of the form n^2 - k^2. For example, 1000 has 28 anti-derivatives, all of this form. Sequence A189763 lists the even numbers that have anti-derivatives not of this form. - T. D. Noe, Apr 27 2011

Examples

			n=13: 2n = 26; 26 = 23 + 3 = 19 + 7 = 13 + 13; 13*13 = maximal => p*q = 13*13 = 169.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{pf = FactorInteger[n]}, If[Plus @@ Last /@ pf == 2, If[ Length[pf] == 2, Plus @@ First /@ pf, 2pf[[1, 1]]], 0]]; t = Table[0, {51}]; Do[a = f[n]; If[ EvenQ[a] && 0 < a < 104, t[[a/2]] = n], {n, 2540}]; t (* Robert G. Wilson v, Jun 14 2005 *)
    Table[k = 0; While[k < n && (! PrimeQ[n - k] || ! PrimeQ[n + k]), k++]; If[k == n, 0, (n - k)*(n + k)], {n, 100}] (* T. D. Noe, Apr 27 2011 *)

Formula

a(n) = n^2 - A047160(n)^2. - Jason Kimberley, Jun 26 2012

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A070015 Least m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56
Offset: 0

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

For odd n >= 9, a(n) <= A073046((n-1)/2). - Max Alekseyev, Sep 01 2025

Examples

			For n=128: a(128)=16129, divisors={1,127,16129}, 1+127=sigma(n)-n=128 and 16129 is the smallest.
		

Crossrefs

See A359132 for another version.

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]-x; t=Table[0, {128}]; Do[c=f[n]; If[c<129&&t[[c]]==0, t[[c]]=n], {n, 1000000}]; t

Formula

a(n) = min(x, A001065(x)=n) or a(n)=0 if n is an untouchable number (i.e., if from A005114).

Extensions

a(0)=1 prepended by Max Alekseyev, Sep 01 2025

A193315 Write 2n=j+q (j,q positive noncomposite numbers); j*q maximal; then a(n)=j*q.

Original entry on oeis.org

1, 4, 9, 15, 25, 35, 49, 55, 77, 91, 121, 143, 169, 187, 221, 247, 289, 323, 361, 391, 437, 403, 529, 551, 589, 667, 713, 703, 841, 899, 961, 943, 1073, 1147, 1189, 1271, 1369, 1363, 1517, 1591, 1681, 1763, 1849, 1927, 2021, 1891, 2209, 2279, 2257, 2491, 2537, 2623, 2809, 2867, 2881
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 26 2011

Keywords

Comments

a(n) = A102084(n) for n > 0. [Reinhard Zumkeller, Aug 28 2011]

Examples

			At n=6, 2n=12; 12 = 1 + 11 = 7 + 5; 7*5 = maximal => j*q = 7*5 = 35.
		

Crossrefs

Programs

  • Haskell
    a193315 1 = 1
    a193315 n = maximum $ zipWith (*) prims $ map (a061397 . (2*n -)) prims
       where prims = takeWhile (<= n) a008578_list
    -- Reinhard Zumkeller, Aug 28 2011
  • Maple
    isA008578 := proc(n) if n = 1 then true ; elif isprime(n) then true; else false; end if; end proc:
    A193315 := proc(n) local mx,j,q ; mx := 0 ; for j from 1 to 2*n-1 do if isA008578(j) then q := 2*n-j ; if isA008578(q) then mx := max(mx,j*q) ; end if ; end if; end do: mx ; end proc:
    seq(A193315(n),n=1..60) ; # R. J. Mathar, Aug 28 2011
  • Sage
    def is_A008578(n): return n == 1 or is_prime(n)
    def A193315(n): return max((j*(2*n-j)) for j in [1]+prime_range(n+1) if is_A008578(2*n-j))
    [A193315(i) for i in range(1,15)]
    # D. S. McNeil, Aug 27 2011
    

A210957 Prime pair (p, q), p<=q, such that p + q = 2*n and p*q is the minimal product.

Original entry on oeis.org

2, 2, 3, 3, 3, 5, 3, 7, 5, 7, 3, 11, 3, 13, 5, 13, 3, 17, 3, 19, 5, 19, 3, 23, 5, 23, 7, 23, 3, 29, 3, 31, 5, 31, 7, 31, 3, 37, 5, 37, 3, 41, 3, 43, 5, 43, 3, 47, 5, 47, 7, 47, 3, 53, 5, 53, 7, 53, 3, 59, 3, 61, 5, 61, 7, 61, 3, 67, 5, 67, 3, 71, 3, 73
Offset: 2

Views

Author

Omar E. Pol, Jun 29 2012

Keywords

Comments

A020481 and A020482 interleaved.

Examples

			-----------------------------------
                 2*n    A073046(n)
       Pair       =         =
n     (p, q)     p+q       p*q
-----------------------------------
2     (2, 2)      4          4
3     (3, 3)      6          9
4     (3, 5)      8         15
5     (3, 7)     10         21
6     (5, 7)     12         35
7     (3, 11)    14         33
8     (3, 13)    16         39
9     (5, 13)    18         65
10    (3, 17)    20         51
11    (3, 19)    22         57
12    (5, 19)    24         95
		

Crossrefs

Formula

p_n = A020481(n), n >= 2.
q_n = A020482(n), n >= 2.
p_n + q_n = 2*n, n >= 2.
p_n * q_n = A073046(n), n >= 2.

A350455 T(n,k) is the k-th semiprime whose sum of prime factors equals 2n, triangle T(n,k), n>=2, 1<=k<=A045917(n), read by rows.

Original entry on oeis.org

4, 9, 15, 21, 25, 35, 33, 49, 39, 55, 65, 77, 51, 91, 57, 85, 121, 95, 119, 143, 69, 133, 169, 115, 187, 161, 209, 221, 87, 247, 93, 145, 253, 289, 155, 203, 299, 323, 217, 361, 111, 319, 391, 185, 341, 377, 437, 123, 259, 403, 129, 205, 493, 529, 215, 287, 407
Offset: 2

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

Assuming Goldbach's conjecture, no row is empty.

Examples

			Triangle T(n,k) begins:
    4;
    9;
   15;
   21,  25;
   35     ;
   33,  49;
   39,  55;
   65,  77;
   51,  91;
   57,  85, 121;
   95, 119, 143;
   69, 133, 169;
  115, 187     ;
  161, 209, 221;
   87, 247     ;
   93, 145, 253, 289;
  155, 203, 299, 323;
  ...
		

Crossrefs

Column k=1 gives A073046.
Last elements of rows give A102084.
Row sums give A228553.
Row products give A337568.
Row lengths give A045917.

Programs

  • Maple
    T:= n-> seq(`if`(andmap(isprime, [h, 2*n-h]), h*(2*n-h), [][]), h=2..n):
    seq(T(n), n=2..30);

A193216 Least semiprime whose sum of prime factors equals n!

Original entry on oeis.org

9, 95, 791, 7799, 85391, 1248959, 4717271, 39916679, 518918231, 6227020631, 143221477871, 1482030950111, 61460695293791, 1108907864061191, 20985558257660519, 262497321934846319, 12286155141292021799, 75419962253475839039
Offset: 3

Views

Author

Michel Lagneau, Jul 18 2011

Keywords

Comments

Write n! = p+q (p,q prime), p*q minimal; then a(n)=p*q. Subset of A073046.

Examples

			a(4) = 95 because,for n=4, 4! = 24; 24 = 5 + 19 = 7 + 17 = 11 + 13; 5*19 is minimal => p*q = 5*19 = 95.
		

Crossrefs

Cf. A073046.

Programs

  • Maple
     with(numtheory):for n from 3 to 20 do:x:=n!:id:=0:for m from 2 to 10000 while(id=0) do:p:=ithprime(m):y:=x-p:if type(y,prime)=true then z:=y*p: id:=1:printf(`%d, `, z): else fi:od:od:
Showing 1-6 of 6 results.