cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A181897 Triangle of refined rencontres numbers: T(n,k) is the number of permutations of n elements with cycle type k (k-th integer partition, defined by A194602).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 8, 3, 6, 1, 10, 20, 15, 30, 20, 24, 1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120, 1, 21, 70, 105, 210, 420, 504, 105, 630, 280, 840, 210, 504, 420, 720, 1, 28, 112, 210, 420, 1120, 1344, 420, 2520, 1120, 3360, 1680, 4032
Offset: 1

Views

Author

Tilman Piesk, Mar 31 2012

Keywords

Comments

T(n,k) tells how often k appears among the first n! entries of A198380, i.e., how many permutations of n elements have the cycle type denoted by k.
This triangle is a refinement of the rencontres numbers A008290, which tell only how many permutations of n elements actually move a certain number of elements. How many of these permutations have a certain cycle type is a more detailed question, answered by this triangle.
The rows are counted from 1, the columns from 0.
Row lengths: 1, 2, 3, 5, 7, 11, ... (partition numbers A000041).
Row sums: 1, 2, 6, 24, 120, 720, ... (factorial numbers A000142).
Row maxima: 1, 1, 3, 8, 30, 144, ... (A059171).
Distinct entries per row: 1, 1, 3, 4, 6, 7, ... (A073906).
It follows from the formula given by Carlos Mafra that the rows of the triangle correspond to the coefficients of the modified Bell polynomials. - Sela Fried, Dec 08 2021
For k>0, the k-th column of triangle T(n,k) is a scaled copy of binomial coefficients binomial(n,q) where q is the least value for which p(q) exceeds or equals k+1, with p() being the integer partitions counting function, A000041(q). E.g., for column 4, the relevant binomial coefficients have q=4 as p(4)=5; for column 5, we have q=5 as p(5)>6; for column 6, we have q=5 as p(5)=7. The scale factor for column k is given by A385081(k+1). This triangle gives coefficients for expressing the characteristic polynomial and determinant of a matrix solely in terms of traces; see extended comment, below, under "Links". - Gregory Gerard Wojnar, Jun 24 2025

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  2;
  1,  6,  8,  3,  6;
  1, 10, 20, 15, 30,  20,  24;
  1, 15, 40, 45, 90, 120, 144, 15, 90, 40, 120;
  ...
		

Crossrefs

Cf. A036039 and references therein for different ordering of terms within each row.

Programs

  • Mathematica
    Table[CoefficientRules[ n! CycleIndex[SymmetricGroup[n], s] // Expand][[All, 2]], {n, 1, 8}] // Grid (* Geoffrey Critzer, Nov 09 2014 *)
    (* Alternative program *)
    partitionMultiplicities[aPartn_]:=Table[Count[aPartn,m],{m,Total[aPartn]}]
    partitionBase[aPartn_]:=Sum[m*aPartn[[m]],{m,Length[aPartn]}]
    partitionFactorial[aPartn_]:=Product[m^aPartn[[m]],{m,partitionBase[aPartn]}]
    partitionParts[aPartn_]:=Sum[aPartn[[m]],{m,Length[aPartn]}]
    A181897[aPartn_]:=Multinomial@@aPartn*partitionBase[aPartn]!/(partitionFactorial[aPartn]*partitionParts[aPartn]!)
    Grid[Table[Map[A181897,ReverseSort[Map[partitionMultiplicities,Partitions[n]],LexicographicOrder]],{n,2,12}]] (* Gregory Gerard Wojnar, Jun 24 2025 *)

Formula

T(n,1) = A000217(n).
T(n,2) = A007290(n).
Let m2, m3, ... count the appearances of 2, 3, ... in the cycle type. E.g., the cycle type 2, 2, 2, 3, 3, 4 implies m2=3, m3=2, m4=1. Then T(n;m2,m3,m4,...) = n!/((2^m2 3^m3 4^m4 ...) m1!m2!m3!m4! ...) where m1 = n - 2m2 - 3m3 - 4m4 - ... . - Carlos Mafra, Nov 25 2014

A073910 Smallest number m such that m and the product of digits of m are both divisible by 3n, or 0 if no such number exists.

Original entry on oeis.org

3, 6, 9, 168, 135, 36, 273, 168, 999, 0, 0, 1296, 0, 378, 495, 384, 0, 1296, 0, 0, 1197, 0, 0, 1368, 3525, 0, 2997, 672, 0, 0, 0, 384, 0, 0, 735, 1296, 0, 0, 0, 0, 0, 3276, 0, 0, 3915, 0, 0, 3168, 7497, 0, 0, 0, 0, 5994, 0, 7896, 0, 0, 0, 0, 0, 0, 7938, 2688, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

Here 0 is regarded as not divisible by any number.
a(n) = 0 if 10 divides 3n or n contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002

Crossrefs

Programs

  • Maple
    f := 3:for i from 1 to 1000 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10):d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi:od:fi:od:seq(a[k],k=1..1000);

Formula

a(n) = A085124(3*n). - R. J. Mathar, Jun 21 2018

Extensions

More terms from Sascha Kurz, Aug 23 2002

A087132 a(n) is the sum of the squares of the sizes of the conjugacy classes in the symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 14, 146, 2602, 71412, 2675724, 134269158, 8747088662, 717107850956, 72007758701716, 8736187050160132, 1258160557017484564, 212232765513231245096, 41518913481377118146520, 9309797624034705006898470, 2374942651509463493006400390, 683620331016710787068868581580
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 18 2003

Keywords

Comments

This is a natural quantity to consider when viewing the symmetric group (Sym_n) as a set. a(n) is the sum over all elements of Sym_n of the size of their conjugacy class. Each conjugacy class is thus counted as many times as its size, giving a sum of squares. - Olivier Gérard, Feb 12 2012

Crossrefs

Programs

  • Magma
    [ &+[ c[2]^2 : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
  • Maple
    b:= proc(n, i) option remember; uses combinat; `if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*((i-1)!^j/j!*
           multinomial(n, n-i*j, i$j, 0))^2, j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..21);  # Alois P. Heinz, Jul 27 2023
  • Mathematica
    multinomial[n_, k_List] := n! / Times @@ (k!);
    b[n_, i_] := b[n, i] = If[n == 0, 1,
        If[i < 1, 0, Sum[b[n-i*j, i-1]*((i-1)!^j/j!*
        multinomial[n, {n-i*j, Sequence@@Table[i, {j}], 0}])^2, {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 29 2024, after Alois P. Heinz *)

Formula

a(n) = (n!)^2 * (c/n^2 + O((log n)/n^3)), where c = prod_{k>=1}sum_{n>=0}1/(k*n!)^2 ~ 4.263403514152669778298935... (see A246879). [Corrected by Vaclav Kotesovec, Sep 21 2014]

Extensions

More terms from Vladeta Jovovic, Oct 22 2003
More terms from Vaclav Kotesovec, Sep 21 2014
a(0)=1 prepended by Alois P. Heinz, Jul 27 2023

A073908 Smallest number m such that m and the product of digits of m are both divisible by 7n, or 0 if no such number exists.

Original entry on oeis.org

7, 378, 273, 476, 175, 378, 3577, 728, 1197, 0, 0, 672, 0, 7742, 735, 784, 0, 3276, 0, 0, 7497, 0, 0, 7896, 1575, 0, 7938, 69776, 0, 0, 0, 12768, 0, 0, 37975, 3276, 0, 0, 0, 0, 0, 71736, 0, 0, 9765, 0, 0, 8736, 47677, 0, 0, 0, 0, 7938, 0, 74872, 0, 0, 0, 0, 0, 0, 7497
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

Here 0 is regarded as not divisible by any number.
a(n) = 0 if n is divisible by 10 or contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002

Examples

			a(8) = 728 is divisible by 7*8 = 56 and also 7*2*8 = 112 = 2*56.
		

Crossrefs

Programs

  • Maple
    f := 7:for i from 1 to 400 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10): d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi: od:fi:od:seq(a[k],k=1..400);

Formula

a(n) = A085124(7*n). - R. J. Mathar, Jun 21 2018

Extensions

More terms from Sascha Kurz, Aug 23 2002

A073909 Smallest number m such that m and the product of digits of m are both divisible by 2n, or 0 if no such number exists.

Original entry on oeis.org

2, 4, 6, 8, 0, 168, 378, 48, 36, 0, 0, 168, 0, 476, 0, 288, 0, 1296, 0, 0, 378, 0, 0, 384, 0, 0, 1296, 728, 0, 0, 0, 448, 0, 0, 0, 1368, 0, 0, 0, 0, 0, 672, 0, 0, 0, 0, 0, 384, 7742, 0, 0, 0, 0, 1296, 0, 784, 0, 0, 0, 0, 0, 0, 3276, 2688, 0, 0, 0, 0, 0, 0, 0, 3168, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

Here 0 is regarded as not divisible by any number.
a(n) = 0 if n is divisible by 5 or contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002

Crossrefs

Programs

  • Maple
    f := 2:for i from 1 to 400 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10): d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi: od:fi:od:seq(a[k],k=1..400);

Formula

a(n) = A085124(2*n). - R. J. Mathar, Jun 21 2018

Extensions

More terms from Sascha Kurz, Aug 23 2002

A073911 Smallest number m such that m and the product of digits of m are both divisible by 5n, or 0 if no such number exists.

Original entry on oeis.org

5, 0, 135, 0, 525, 0, 175, 0, 495, 0, 0, 0, 0, 0, 3525, 0, 0, 0, 0, 0, 735, 0, 0, 0, 55125, 0, 3915, 0, 0, 0, 0, 0, 0, 0, 1575, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15975, 0, 0, 0, 37975, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9765, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 155625, 0, 0, 0, 0, 0, 31995, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

Here 0 is regarded as not divisible by any number.
a(n) = 0 if n is divisible by 2 or contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002

Crossrefs

Programs

  • Maple
    f := 5:for i from 1 to 400 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10): d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi: od:fi:od:seq(a[k],k=1..400);

Formula

a(n) = A085124(5*n). - R. J. Mathar, Jun 21 2018

Extensions

More terms from Sascha Kurz, Aug 23 2002

A073912 Smallest number m such that m and the product of digits of m are both divisible by 8n, or 0 if no such number exists.

Original entry on oeis.org

8, 48, 168, 288, 0, 384, 728, 448, 1368, 0, 0, 384, 0, 784, 0, 2688, 0, 3168, 0, 0, 7896, 0, 0, 2688, 0, 0, 4968, 12768, 0, 0, 0, 4864, 0, 0, 0, 4896, 0, 0, 0, 0, 0, 8736, 0, 0, 0, 0, 0, 2688, 74872, 0, 0, 0, 0, 22896, 0, 14784, 0, 0, 0, 0, 0, 0, 33768, 14848, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

Here 0 is regarded as not divisible by any number.
a(n) = 0 if 5 divides n or n contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002 [Corrected by Sean A. Irvine, Dec 23 2024]

Crossrefs

Programs

  • Maple
    f := 8:for i from 1 to 400 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10): d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi: od:fi:od:seq(a[k],k=1..400);

Formula

a(n) = A085124(8*n). - R. J. Mathar, Jun 21 2018

Extensions

More terms from Sascha Kurz, Aug 23 2002

A102465 a(n) = number of distinct values of Product_{i=1..r} x_i!*i!^x_i, where (x_1, ..., x_r) is an r-tuple of nonnegative integers with Sum_{i=1..r} i*x_i = n.

Original entry on oeis.org

1, 1, 2, 4, 4, 7, 7, 13, 17, 23, 26, 40, 45, 60, 64, 102, 115, 148, 169, 225, 261, 337, 375, 470, 552, 668, 780, 954, 1078, 1331, 1469, 1811, 2055, 2475, 2776, 3343, 3764, 4447, 4983, 5898, 6622, 7771, 8646, 10192, 11403, 13238, 14680, 17011, 19010, 21877
Offset: 1

Views

Author

Vladeta Jovovic, Feb 23 2005

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
           {seq(map(x-> x*i!^j*j!, b(n-i*j, i-1))[], j=0..n/i)})) end:
    a:= n-> nops(b(n, n)):
    seq(a(n), n=1..40);    # Alois P. Heinz, Apr 13 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Table[# i!^j j!& /@ b[n - i j, i - 1], {j, 0, n/i}] // Flatten // Union]];
    a[n_] := Length[b[n, n]];
    Array[a, 40] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz *)

Extensions

More terms from David Wasserman, Apr 11 2008
Showing 1-8 of 8 results.