A076515
Numbers k such that 1 + 3^k + 5^k is prime.
Original entry on oeis.org
0, 12, 36, 48, 72, 120, 605376
Offset: 1
-
[n: n in [0..1000]|IsPrime(3^n+5^n+1)] // Vincenzo Librandi, Jan 22 2011
-
A076515:=n->`if`(isprime(1+3^n+5^n), n, NULL): seq(A076515(n), n=0..200); # Wesley Ivan Hurt, Aug 06 2017
-
Do[ If[ PrimeQ[1 + 3^n + 5^n], Print[n]], {n, 0, 3500, 2}]
Select[Range[0,5000],PrimeQ[1+3^#+5^#]&] (* Harvey P. Dale, Mar 09 2012 *)
-
lista(nn) = for(n=0, nn, if(ispseudoprime(1 + 3^n + 5^n), print1(n, ", "))); \\ Altug Alkan, Jan 25 2016
A134006
a(n) = 1^n + 3^n + 5^n + 7^n.
Original entry on oeis.org
4, 16, 84, 496, 3108, 20176, 134004, 903856, 6161988, 42326416, 292299924, 2026332016, 14085959268, 98111307856, 684331371444, 4778093436976, 33385561506948, 233393582580496, 1632228682596564, 11417969833962736
Offset: 0
a(3)=84 because 1^2+3^2+5^2+7^2=84.
-
[1^n + 3^n + 5^n + 7^n: n in [0..30]]; // Vincenzo Librandi, Jun 20 2011
-
Table[1^n+3^n+5^n+7^n,{n,0,30}]
-
{a(n) = 1^n + 3^n + 5^n + 7^n}; /* Michael Somos, Jun 29 2017 */
A134007
a(n) = 1^n + 3^n + 5^n + 7^n + 9^n.
Original entry on oeis.org
5, 25, 165, 1225, 9669, 79225, 665445, 5686825, 49208709, 429746905, 3779084325, 33407391625, 296515495749, 2639977136185, 23561123826405, 210669225531625, 1886405750358789, 16910575282247065, 151726863979595685
Offset: 0
a(3)=165 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 = 165.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq. 6.
- Index entries for linear recurrences with constant coefficients, signature (25, -230, 950, -1689, 945).
-
[1^n + 3^n + 5^n + 7^n + 9^n: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
-
Table[1^n+3^n+5^n+7^n+9^n,{n,0,30}]
A081508
Primes of form 1 + 3^k + 5^k.
Original entry on oeis.org
3, 244672067, 14551915378461487103639747, 3552713678880267372432493847753987, 211758236813575107295480170109084902352995775163267
Offset: 1
-
Do[s=1^w+3^w+5^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}]
-
lista(kmax) = {my(p); for(k = 0, kmax, p = 1 + 3^k + 5^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 11 2024
A134008
a(n) = 1^n + 3^n + 5^n + 7^n + 9^n + 11^n.
Original entry on oeis.org
6, 36, 286, 2556, 24310, 240276, 2437006, 25173996, 263567590, 2787694596, 29716508926, 318719062236, 3434943872470, 37162689280116, 403310957409646, 4387917394947276, 47836135613930950, 522357603781540836
Offset: 0
a(3)=286 because 1^2 + 3^2 + 5^2 + 7^2 + 9^2 + 11^2 = 286.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq. 6.
- Index entries for linear recurrences with constant coefficients, signature (36,-505,3480,-12139,19524,-10395).
-
[1^n + 3^n + 5^n + 7^n + 9^n + 11^n: n in [0..20]]; // Vincenzo Librandi, Jun 20 2011
-
Table[1^n+3^n+5^n+7^n+9^n+11^n,{n,0,30}]
Join[{6},Table[Total[Range[1,11,2]^n],{n,20}]] (* or *) LinearRecurrence[ {36,-505,3480,-12139,19524,-10395},{6,36,286,2556,24310,240276},20] (* Harvey P. Dale, Apr 20 2015 *)
Showing 1-5 of 5 results.
Comments