cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.

Original entry on oeis.org

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
Primes which are the average of three consecutive primes. - Peter Schorn, Apr 30 2025

Examples

			5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.

Programs

  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = filter ((== 1) . a010051) a075540_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = h a000040_list where
       h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
    p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
    Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
  • PARI
    betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(prime(x)",")) ) } \\ Cino Hilliard, Jan 25 2005
    
  • PARI
    forprime(p=1,999, p-precprime(n-1)==nextprime(p+1)-p && print1(p",")) \\ M. F. Hasler, Jun 01 2013
    
  • PARI
    is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    from sympy import nextprime; p, q, r = 2, 3, 5
    while q < 6000:
        if 2*q == p + r: print(q, end = ", ")
        p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021

Formula

2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024

Extensions

Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011

A064113 Indices k such that (1/3)*(prime(k)+prime(k+1)+prime(k+2)) is a prime.

Original entry on oeis.org

2, 15, 36, 39, 46, 54, 55, 73, 102, 107, 110, 118, 129, 160, 164, 184, 187, 194, 199, 218, 239, 271, 272, 291, 339, 358, 387, 419, 426, 464, 465, 508, 520, 553, 599, 605, 621, 629, 633, 667, 682, 683, 702, 709, 710, 733, 761, 791, 813, 821, 822, 829, 830
Offset: 1

Views

Author

Jason Earls, Sep 08 2001

Keywords

Comments

n such that d(n) = d(n+1), where d(n) = prime(n+1) - prime(n) = A001223(n).
Of interest because when I generalize it to d(n) = d(n+2), d(n) = d(n+3), etc. I am unable to find any positive number k such that d(n) = d(n+k) has no solution.
From Lei Zhou, Dec 06 2005: (Start)
When (1/3)*(prime(k) + prime(k+1) + prime(k+2)) is prime, then it is equal to prime(k+1).
Also, indices k such that (prime(k)+prime(k+2))/2 = prime(k+1).
The Mathematica program is based on the alternative definition. (End)
Inflection and undulation points of the primes, i.e., positions of zeros in A036263, the second differences of the primes. - Gus Wiseman, Mar 24 2020

Examples

			a(2) = 15 because (p(15)+p(16)+p(17)) = 1/3(47 + 53 + 59) = 53 (prime average of three successive primes).
Splitting the prime gaps into anti-runs gives: (1,2), (2,4,2,4,2,4,6,2,6,4,2,4,6), (6,2,6,4,2,6,4,6,8,4,2,4,2,4,14,4,6,2,10,2,6), (6,4,6), ... Then a(n) is the n-th partial sum of the lengths of these anti-runs. - _Gus Wiseman_, Mar 24 2020
		

Crossrefs

Indices of zeros in A036263 (second differences of primes).
Indices (A000720 = primepi) of balanced primes A006562, minus 1.
Cf. A262138.
Complement of A333214.
First differences are A333216.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
A triangle for anti-runs of compositions is A106356.
Lengths of maximal runs of prime gaps are A333254.
Anti-runs of compositions in standard order are A333381.

Programs

  • Haskell
    import Data.List (elemIndices)
    a064113 n = a064113_list !! (n-1)
    a064113_list = map (+ 1) $ elemIndices 0 a036263_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Mathematica
    ct = 0; Do[If[(Prime[k] + Prime[k + 2] - 2*Prime[k + 1]) == 0, ct++; n[ct] = k], {k, 1, 2000}]; Table[n[k], {k, 1, ct}] (* Lei Zhou, Dec 06 2005 *)
    Join@@Position[Differences[Array[Prime,100],2],0] (* Gus Wiseman, Mar 24 2020 *)
  • PARI
    d(n) = prime(n+1)-prime(n); j=[]; for(n=1,1500, if(d(n)==d(n+1), j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (d(m)==d(m+1), write("b064113.txt", n++, " ", m); if (n==1000, break)) ) } \\ Using d(n) above. - Harry J. Smith, Sep 07 2009
    
  • PARI
    [n | n<-[1..888], !A036263(n)] \\ M. F. Hasler, Oct 15 2024
    
  • PARI
    \\ More efficient for larges range of n:
    A064113_upto(N, n=1, L=List(), q=prime(n+1), d=q-prime(n))={forprime(p=1+q,, if(d==d=p-q, listput(L,n); #LM. F. Hasler, Oct 15 2024
    
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A064113_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r==(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A064113_list = list(islice(A064113_gen(),20)) # Chai Wah Wu, Feb 27 2024

Formula

A036263(a(n)) = 0; A122535(n) = A000040(a(n)); A006562(n) = A000040(a(n) + 1); A181424(n) = A000040(a(n) + 2). - Reinhard Zumkeller, Jan 20 2012
A262138(2*a(n)) = 0. - Reinhard Zumkeller, Sep 12 2015
a(n) = A000720(A006562(n)) - 1, where A000720 = (prime)pi, A006562 = balanced primes. - M. F. Hasler, Oct 15 2024

A298073 The first of three consecutive integers the sum of which is equal to the sum of three consecutive prime numbers.

Original entry on oeis.org

4, 52, 156, 172, 210, 256, 262, 372, 510, 536, 562, 592, 606, 652, 732, 946, 976, 998, 1072, 1102, 1122, 1186, 1222, 1238, 1366, 1460, 1500, 1510, 1540, 1746, 1752, 1762, 1772, 1898, 1906, 1916, 2070, 2180, 2286, 2400, 2408, 2416, 2448, 2676, 2902, 2962
Offset: 1

Views

Author

Colin Barker, Jan 11 2018

Keywords

Comments

Also: Number m such that 3 * m + 6 is the sum of three consecutive primes. - David A. Corneth, Jan 12 2018

Examples

			52 is in the sequence because 52 + 53 + 54 = 159 = 47 + 53 + 59.
		

Crossrefs

Cf. A054643.
Cf. A075540: the second of the three consecutive integers.

Programs

  • Mathematica
    Block[{nn = 430, s}, s = Total /@ Partition[Prime@ Range[nn], 3, 1]; Select[Partition[Range[Prime@ nn], 3, 1], MemberQ[s, Total@ #] &]][[All, 1]] (* Michael De Vlieger, Jan 11 2018 *)
    (#-3)/3&/@Select[Total/@Partition[Prime[Range[500]],3,1],Mod[#,3]==0&] (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    L=List(); forprime(p=2, 4000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if((t-3)%3==0, listput(L, (t-3)/3))); Vec(L)

Extensions

New name by David A. Corneth, Jan 12 2018

A082080 Smallest balanced prime of order n.

Original entry on oeis.org

2, 5, 79, 17, 491, 53, 71, 29, 37, 983, 5503, 173, 157, 353, 5297, 263, 179, 383, 137, 2939, 2083, 751, 353, 5501, 1523, 149, 4561, 1259, 397, 787, 8803, 8803, 607, 227, 3671, 17443, 57097, 3607, 23671, 12539, 1217, 11087, 1087, 21407, 19759, 953
Offset: 0

Views

Author

Labos Elemer, Apr 08 2003

Keywords

Comments

Or, smallest (2n+1)-balanced prime number.
Prime(k) is a balanced prime of order n if it is the average of the 2n+1 primes from prime(k-n) to prime(k+n).

Examples

			a(1) = 5 = (3 + 5 + 7)/3 = 15/3.
a(5) = 53 = (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73)/11 = 583/11.
a(6) = 71 = (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101)/13 = 923/13.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ Range[2n +1]}, While[ Total[p] != (2n +1) p[[n +1]], p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; p[[n +1]]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 21 2004 and modified Apr 11 2017 *)
  • PARI
    for(n=0, 50, i=2*n+1;f=0;forprime(p=2, 10^7, s=0;c=i;pr=p-1;t=0;while(c>0, c=c-1;pr=nextprime(pr+1);s=s+pr; if(c==(i-1)/2, t=pr)); if(s/i==t, print1(t", ");f=1;break)); if(!f, print1("0, ")))

Extensions

Corrected and extended by Ralf Stephan, Apr 09 2003

A337489 a(n) is the k-th prime, such that abs(prime(k) - Sum_{j=k-1..k+1} prime(j)/3) sets a new record.

Original entry on oeis.org

3, 7, 29, 113, 523, 1151, 1327, 9551, 15683, 19609, 25471, 31397, 156007, 360653, 370261, 492113, 1349533, 1357201, 1357333, 1562051, 2010733, 4652507, 17051707, 17051887, 20831323, 47326693, 47326913, 122164747, 189695893, 191912783, 387096133, 428045741, 436273291
Offset: 1

Views

Author

Hugo Pfoertner, Aug 29 2020

Keywords

Comments

A337488 are the corresponding values of k.

Examples

			List of first terms:
   a(n) pi(a(n))  average-median
     3,      2,   1/3  = (2 + 3 + 5)/3 - 3
     7,      4,   2/3  = (5 + 7 + 11)/3 - 7
    29,     10,  -4/3  = (23 + 29 + 31)/3 - 29
   113,     30,  10/3
   523,     99,  16/3
  1151,    190, -20/3
  1327,    217,  28/3
  9551,   1183,  32/3
		

Crossrefs

Programs

  • PARI
    a337489(limp) = {my(p1=0, p2=2, p3=3, s=p1+p2+p3, d=0); forprime(p=5, limp, s=s-p1+p; my(dd=abs(s/3-p3)); if(dd>d, print1(p3, ", "); d=dd); p1=p2; p2=p3; p3=p)};
    a337489(500000000)

Extensions

Name edited by Peter Munn, Aug 01 2025

A075541 Numbers k such that prime(k) + prime(k+1) + prime(k+2) is a multiple of 3.

Original entry on oeis.org

2, 15, 36, 39, 46, 54, 55, 73, 96, 99, 102, 107, 110, 118, 129, 160, 164, 167, 179, 184, 187, 194, 199, 202, 218, 231, 238, 239, 242, 271, 272, 273, 274, 290, 291, 292, 311, 326, 339, 356, 357, 358, 362, 387, 419, 426, 437, 438, 449, 452, 464, 465, 489, 508
Offset: 1

Views

Author

Zak Seidov, Sep 21 2002

Keywords

Comments

Not every three successive primes have an integer average. The integer averages are in A075540.
Not all of these 3-averages are prime: the prime 3-averages are in A006562 (balanced primes). There are surprisingly many prime 3-averages: among first 117 3-averages, there are 59 primes. Indices i(n) of first prime in sequence of three primes with integer average are in sequence A064113. Interprimes (s-averages with s=2) are all composite, see A024675.

Examples

			a(2) = 15 because (prime(15)+prime(16)+prime(17)) = (1/3)*(47 + 53 + 59) = 53 (integer average of three successive primes).
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    q:= 2: r:= 3:
    for i from 1 while count < 100 do
      p:= q; q:= r; r:= nextprime(r);
      if p+q+r mod 3 = 0 then
         R:= R,i; count:= count+1
      fi
    od:
    R; # Robert Israel, Nov 10 2024
  • Mathematica
    A075541= {}; Do[If[IntegerQ[s3 = (Prime[i] + Prime[i + 1] + Prime[i + 2])/3], A075541 = Append[A075541, i]], {i, 1000}]; (* 119 terms*)

A082312 Half the difference between start and center prime of the smallest [2n+1]-balanced prime set (A082080).

Original entry on oeis.org

1, 4, 5, 14, 11, 14, 12, 15, 32, 36, 32, 30, 41, 65, 42, 41, 53, 45, 75, 76, 69, 63, 99, 98, 60, 112, 99, 84, 94, 130, 132, 103, 87, 140, 172, 175, 144, 190, 171, 140, 200, 145, 203, 190, 155, 168, 202, 210, 144, 157, 254, 185, 189, 306, 201, 323, 303, 229, 267
Offset: 1

Views

Author

Ralf Stephan, Apr 09 2003

Keywords

Examples

			The smallest 5-balanced prime, 79 (center of 71,73,79,83,89) minus 8 is 71, so a(2)=8/2=4.
		

Crossrefs

Programs

  • PARI
    for(n=1, 80, i=2*n+1; f=0; forprime(p=2, 10^7, s=0; c=i; pr=p-1; t=0; while(c>0, c=c-1; pr=nextprime(pr+1); s=s+pr; if(c==(i-1)/2, t=pr)); if(s/i==t, print1((t-p)/2", "); f=1; break)); if(!f, print1("0, ")))

A349793 Primes which are the nearest integer to the harmonic mean of the previous prime and the following prime.

Original entry on oeis.org

3, 7, 13, 23, 47, 89, 157, 173, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Hugo Pfoertner, Nov 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[750]],3,1],Round[HarmonicMean[{#[[1]],#[[3]]}]]==#[[2]]&][[;;,2]] (* Harvey P. Dale, Dec 29 2024 *)
  • PARI
    a349793(limit) = {my(p1=2,p2=3); forprime(p3=5, limit, my(hm=round((2*p1*p3)/(p1+p3))); if(p2==hm, print1(p2,", ")); p1=p2;p2=p3)};
    a349793(5500)
Showing 1-8 of 8 results.