cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A353000 Quotients obtained when sigma(k) divides antisigma(k) with k = A076617(n), sigma (A000203) is the sum of divisors function and antisigma (A024816) is the sum of the non-divisors of n less than n function.

Original entry on oeis.org

0, 0, 4, 4, 4, 37, 25, 68, 49, 122, 115, 340, 544, 487, 959, 2167, 1926, 4837, 3847, 6757, 6452, 3620, 11353, 13934, 9371, 16353, 9211, 30949, 49702, 17330, 32575, 72544, 62348, 109769, 145892, 51270, 173914, 130687, 61665, 102887, 351770, 446927, 504949, 258079
Offset: 1

Views

Author

Bernard Schott, Apr 14 2022

Keywords

Comments

Note that the quotient obtained when sigma(k) divides k*(k+1)/2 with k = A076617(n) is a(n) + 1.

Examples

			A076617(6) = 95; sigma(95) = 120 and antisigma(95) = 4440, hence a(6) = 4440 / 120 = 37.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[(k*(k + 1)/2)/DivisorSigma[1, k] - 1, {k, 1, 10^6}], IntegerQ] (* Amiram Eldar, Apr 14 2022 *)
  • PARI
    is(n) = n*(n+1)/2%sigma(n) == 0; \\ A076617
    f(n) = n*(n+1)/(2*sigma(n)) - 1;
    lista(nn) = apply(f, select(is, [1..nn])); \\ Michel Marcus, Apr 15 2022

Formula

a(n) = A024816(A076617(n)) / A000203(A076617(n)).

Extensions

More terms from Amiram Eldar, Apr 14 2022

A024816 Antisigma(n): Sum of the numbers less than n that do not divide n.

Original entry on oeis.org

0, 0, 2, 3, 9, 9, 20, 21, 32, 37, 54, 50, 77, 81, 96, 105, 135, 132, 170, 168, 199, 217, 252, 240, 294, 309, 338, 350, 405, 393, 464, 465, 513, 541, 582, 575, 665, 681, 724, 730, 819, 807, 902, 906, 957, 1009, 1080, 1052, 1168, 1182, 1254, 1280, 1377, 1365
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

a(n) is the sum of proper non-divisors of n, the row sum in triangle A173541. - Omar E. Pol, May 25 2010
a(n) is divisible by A000203(n) iff n is in A076617. - Bernard Schott, Apr 12 2022

Examples

			a(12)=50 as 5+7+8+9+10+11 = 50 (1,2,3,4,6 not included as they divide 12).
		

Crossrefs

Cf. A342344 (for a symmetric representation).

Programs

  • Haskell
    a024816 = sum . a173541_row  -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    [n*(n+1) div 2- SumOfDivisors(n): n in [1..60]]; // Vincenzo Librandi, Dec 29 2015
    
  • Maple
    A024816 := proc(n)
        n*(n+1)/2-numtheory[sigma](n) ;
    end proc: # R. J. Mathar, Aug 03 2013
  • Mathematica
    Table[n(n + 1)/2 - DivisorSigma[1, n], {n, 55}] (* Robert G. Wilson v *)
    Table[Total[Complement[Range[n],Divisors[n]]],{n,60}] (* Harvey P. Dale, Sep 23 2012 *)
    With[{nn=60},#[[1]]-#[[2]]&/@Thread[{Accumulate[Range[nn]],DivisorSigma[ 1,Range[nn]]}]] (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    a(n)=n*(n+1)/2-sigma(n) \\ Charles R Greathouse IV, Mar 19 2012
    
  • Python
    from sympy import divisor_sigma
    def A024816(n): return (n*(n+1)>>1)-divisor_sigma(n) # Chai Wah Wu, Apr 28 2023
    
  • SageMath
    def A024816(n): return sum(k for k in (0..n-1) if not k.divides(n))
    print([A024816(n) for n in srange(1, 55)])  # Peter Luschny, Nov 14 2023

Formula

a(n) = n*(n+1)/2 - sigma(n) = A000217(n) - A000203(n).
a(n) = A024916(n-1) - A153485(n), n > 1. - Omar E. Pol, Jun 24 2014
From Wesley Ivan Hurt, Jul 16 2014, Dec 28 2015: (Start)
a(n) = Sum_{i=1..n} i * ( ceiling(n/i) - floor(n/i) ).
a(n) = Sum_{k=1..n} (n mod k) + (-n mod k). (End)
G.f.: x/(1 - x)^3 - Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 18 2017
From Omar E. Pol, Mar 21 2021: (Start)
a(n) = A244048(n) + A004125(n).
a(n) = A153485(n-1) + A004125(n), n >= 2. (End)
a(p) = (p-2)*(p+1)/2 for p prime. - Bernard Schott, Apr 12 2022

A232324 n(n+1)/2 modulo sigma(n).

Original entry on oeis.org

0, 0, 2, 3, 3, 9, 4, 6, 6, 1, 6, 22, 7, 9, 0, 12, 9, 15, 10, 0, 7, 1, 12, 0, 15, 15, 18, 14, 15, 33, 16, 24, 33, 1, 6, 29, 19, 21, 52, 10, 21, 39, 22, 66, 21, 1, 24, 60, 28, 66, 30, 6, 27, 45, 28, 36, 53, 1, 30, 150, 31, 33, 40, 48, 45, 51, 34, 78, 15, 37, 36
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2013

Keywords

Comments

Also antisigma(n) modulo sigma(n). Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
a(n) = 0 for numbers from A076617, a(n) = 1 for numbers from A232540, a(n) = n for numbers from A232538.

Examples

			For n=10, a(10) = antisigma(10) mod sigma(10) = 37 mod 18 = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n (n + 1)/2, DivisorSigma[1, n]], {n, 100}] (* T. D. Noe, Nov 27 2013 *)

Formula

a(n) = n(n+1)/2 mod A000203(n).

A066860 The sum of the non-divisors of n (less than n) is a multiple of the sum of the divisors of n.

Original entry on oeis.org

15, 20, 24, 95, 104, 207, 224, 287, 464, 1023, 1199, 1952, 4095, 4607, 8036, 12095, 15872, 16895, 19359, 22932, 23519, 28799, 45440, 45695, 54144, 77375, 101567, 102024, 130304, 159599, 163295, 223199, 296207, 317184, 352799, 522752, 524160
Offset: 1

Views

Author

Joseph L. Pe, Jan 25 2002

Keywords

Examples

			Divisors of 15 = {1, 3, 5, 15}, which sum to 24. Non-divisors of 15 less than 15 = {2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}, which sum to 96, a multiple of 24. So 15 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{a, b, c}, a = Divisors[n]; b = Apply[Plus, Complement[Range[1, n], a]]; c = Apply[Plus, a]; Mod[b, c] == 0]; Do[If[f[n] == True, Print[n]], {n, 3, 23519}]
    Select[Range[3, 10000], Mod[# (# + 1)/2, DivisorSigma[1, #]] == 0 &] (* T. D. Noe, Nov 27 2013 *)

Formula

a(n) = A076617(n+2). - Alex Ratushnyak, Jul 02 2013
A232324(a(n)) = A024816(a(n)) mod A000203(a(n)) = 0. - Jaroslav Krizek, Nov 25 2013

Extensions

More terms from Lior Manor, Feb 10 2002

A232538 Numbers n such that (n(n+1)/2) modulo sigma(n) = n.

Original entry on oeis.org

33, 136, 145, 261, 897, 1441, 2016, 2241, 2353, 3808, 4320, 7201, 17101, 26937, 30721, 32896, 46593, 70561, 148960, 151633, 169345, 174592, 208801, 400401, 578593, 712801, 803800, 1040401, 1103233, 1596673, 2265121, 2377089, 3330001, 4357153, 5953024, 5962321
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2013

Keywords

Comments

Also numbers n such that antisigma(n) modulo sigma(n) = n. Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
Numbers n such that A232324(n) = n.
a(19) > 10^5.

Examples

			136 is in sequence because antisigma(136) mod sigma(136) = 9046 mod 270 = 136.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6*10^6],Mod[(#(#+1))/2,DivisorSigma[1,#]]==#&] (* Harvey P. Dale, Sep 12 2019 *)
  • PARI
    isok(n) = (n*(n+1)/2 - sigma(n)) % sigma(n) == n; \\ Michel Marcus, Nov 25 2013

Formula

A232324(a(n)) = n.

Extensions

More terms from Michel Marcus, Nov 25 2013

A232540 Numbers n such that (n(n+1)/2) modulo sigma(n) = 1.

Original entry on oeis.org

10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 385, 394, 430, 454, 466, 478, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042
Offset: 1

Views

Author

Jaroslav Krizek, Nov 25 2013

Keywords

Comments

Also numbers n such that antisigma(n) modulo sigma(n) = 1. Antisigma(n) = A024816(n) = the sum of the nondivisors of n that are between 1 and n, sigma(n) = A000203(n) = the sum of the divisors of n.
Numbers n such that A232324(n) = 1.
Number 5950 is only squareful number from first 1400 terms (< 50000) of this sequence.
Conjecture: supersequence of A112774 (semiprimes of the form 6n+4).

Examples

			106 is in sequence because antisigma(106) mod sigma(106) = 5509 mod 162 = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],Mod[(#(#+1))/2,DivisorSigma[1,#]]==1&] (* Harvey P. Dale, Sep 08 2017 *)

A352811 Table read by rows: row n gives triples (u, k, m) such that k and m are the smallest integers that respectively satisfy A352810(n) = u = A000203(k) = A024816(m).

Original entry on oeis.org

3, 2, 4, 20, 19, 7, 32, 21, 9, 54, 34, 11, 96, 42, 15, 132, 86, 18, 168, 60, 20, 217, 100, 22, 240, 114, 24, 252, 96, 23, 294, 164, 25, 338, 337, 27, 350, 349, 28, 464, 463, 31, 465, 200, 32, 582, 386, 35, 819, 288, 41, 1052, 1051, 48, 1080, 408, 47, 1182, 1181, 50
Offset: 1

Views

Author

Bernard Schott, Apr 12 2022

Keywords

Comments

A000203 is the function sigma sum of divisors, while A024816 is the antisigma function, sum of the numbers less than n that do not divide n.

Examples

			The table begins:
  ------------------------------------------------------------------
  | row |      u =        | smallest k with  |    smallest m with  |
  |  n  |   A352810(n)    |  A000203(k) = u  |     A024816(m) = u  |
  ------------------------------------------------------------------
    n=1 :         3,                   2,                   4;
    n=2 :        20,                  19,                   7;
    n=3 :        32,                  21,                   9;
    n=4 :        54,                  34,                  11;
    n=5 :        96,                  42,                  15;
    n=6 :       132,                  86,                  18;
  ...................................................................
3rd row is (32, 21, 9) because A352810(3) = 32, sigma(21) = sigma(31) = 32 and antisigma(9) = 2+4+5+6+7+8 = 32, hence 21 and 9 are respectively the smallest integers k and m such that sigma(k) = antisigma(m) = 32.
5th row is (96, 42, 15) because A352810(5) = 96 and 42 and 15 are respectively the smallest integers k and m such that sigma(k) = antisigma(m) = 96.
		

Crossrefs

Programs

  • Mathematica
    m = 2000; r = Range[m]; s = DivisorSigma[1, r]; as = r*(r + 1)/2 - s; i = Select[Intersection[s, as], # <= m &]; Flatten @ Transpose @ Join[{i}, Map[Flatten[Table[FirstPosition[#, i[[k]]], {k, 1, Length[i]}]] &, {s, as}]] (* Amiram Eldar, Apr 12 2022 *)

Extensions

More terms from Amiram Eldar, Apr 13 2022
Showing 1-7 of 7 results.