cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077947 Expansion of 1/(1 - x - x^2 - 2*x^3).

Original entry on oeis.org

1, 1, 2, 5, 9, 18, 37, 73, 146, 293, 585, 1170, 2341, 4681, 9362, 18725, 37449, 74898, 149797, 299593, 599186, 1198373, 2396745, 4793490, 9586981, 19173961, 38347922, 76695845, 153391689, 306783378, 613566757, 1227133513, 2454267026, 4908534053, 9817068105
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Number of sequences of codewords of total length n from the code C={0,10,110,111}. E.g., a(3)=5 corresponds to the sequences 000, 010, 100, 110 and 111. - Paul Barry, Jan 23 2004
In other words: number of compositions of n into 1 kind of 1's and 2's and two kinds of 3's. - Joerg Arndt, Jun 25 2011
Diagonal sums of number Pascal-(1,2,1) triangle A081577. - Paul Barry, Jan 24 2005
For n>0: a(n) = A173593(2*n+1) - A173593(2*n); a(n+1) = A173593(2*n) - A173593(2*n-1). - Reinhard Zumkeller, Feb 22 2010
Sums of 3 successive terms are powers of 2. - Mark Dols, Aug 20 2010
For n > 2, a(n) is the number of quaternary sequences of length n (i) starting with q(0)=0; (ii) ending with q(n-1)=0 or 3 and (iii) in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018

Examples

			It is shown in A294627 that there are 42 quaternary sequences (i.e. build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(4) = 9 of them start with 0 and end with 0 or 3: 0030, 0033, 0130, 0230, 0300, 0303, 0310, 0320, 0330. - _Wojciech Florek_, Jul 30 2018
		

References

  • S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, 1996, p. 42

Crossrefs

Apart from signs, same as A077972.
Cf. A139217 and A139218.
Cf. A078010.
Cf. A294627.

Programs

  • Magma
    [Round(2^(n+2)/7): n in [0..40]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    seq(round(2^(n+2)/7),n=0..25); # Mircea Merca, Dec 28 2010
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 - 2*x^3), {x, 0, 100}], x] (* or *) LinearRecurrence[{1, 1, 2}, {1, 1, 2}, 70] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(k-j),j,0,k),k,1,n); /* Vladimir Kruchinin, Sep 07 2010 */
    
  • PARI
    Vec(1/(1-x-x^2-2*x^3) + O(x^100)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A077947(n): return (k:=(m:=1<=7) # Chai Wah Wu, Jan 21 2023

Formula

G.f.: 1/((1-2*x)*(1+x+x^2)).
a(n) = a(n-1)+a(n-2)+2*a(n-3). - Paul Curtz, May 23 2008
a(n) = round(2^(n+2)/7). - Mircea Merca, Dec 28 2010
a(n) = 4*2^n/7 + 3*cos(2*Pi*n/3)/7 + sqrt(3)*sin(2*Pi*n/3)/21. - Paul Barry, Jan 23 2004
Convolution of A000079 and A049347. a(n) = Sum_{k=0..n} 2^k*2*sqrt(3)*cos(2*Pi(n-k)/3+Pi/6)/3. - Paul Barry, May 19 2004
a(n) = sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(k-j),j,0,k),k,1,n), n>0. - Vladimir Kruchinin, Sep 07 2010
Partial sums of A078010 starting (1, 0, 1, 3, 4, 9, ...). - Gary W. Adamson, May 13 2013
a(n) = (1/14)*(2^(n + 3) + (-1)^n*((-1)^floor(n/3) + 4*(-1)^floor((n + 1)/3) + 2*(-1)^floor((n + 2)/3) + (-1)^floor((n + 4)/3))). - John M. Campbell, Dec 23 2016
a(n) = (1/63)*(9*2^(2 + n) + (-1)^n*(2 + 9*floor(n/6) - 32*floor((n + 5)/6) + 24*floor((n + 7)/6) + 20*floor((n + 8)/6) - 10*floor((n + 9)/6) - 27*floor((n + 10)/6) + 14*floor((n + 11)/6) + 3*floor((n + 13)/6) - 2*floor((n + 14)/6) + floor((n + 15)/6))). - John M. Campbell, Dec 23 2016
7*a(n) = 2^(n+2) + A167373(n+1). - R. J. Mathar, Feb 06 2020
a(n) = T(n+1) + 2*(a(1)*T(n-1) + a(2)*T(n-2) + ... + a(n-2)*T(2) + a(n-1)*T(1)) for T(n) = A000073(n), the tribonacci numbers. - Greg Dresden and Bora Bursalı, Sep 14 2023

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021