A078371 a(n) = (2*n+5)*(2*n+1).
5, 21, 45, 77, 117, 165, 221, 285, 357, 437, 525, 621, 725, 837, 957, 1085, 1221, 1365, 1517, 1677, 1845, 2021, 2205, 2397, 2597, 2805, 3021, 3245, 3477, 3717, 3965, 4221, 4485, 4757, 5037, 5325, 5621, 5925, 6237, 6557, 6885, 7221, 7565, 7917, 8277, 8645
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See Example 6.6.5 p. 34.
- A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 578.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(2*n+5)*(2*n+1): n in [0..100]]; // G. C. Greubel, Sep 19 2018
-
Maple
seq((2*n+5)*(2*n+1), n=0..48); # Emeric Deutsch, Feb 24 2005
-
Mathematica
Table[(2 n + 5) (2 n + 1), {n, 0, 100}] (* Wesley Ivan Hurt, Nov 19 2013 *) LinearRecurrence[{3,-3,1},{5,21,45},50] (* Harvey P. Dale, Oct 18 2020 *)
-
PARI
lista(nn) = {for (n=0, nn, print1((2*n+1)*(2*n+5), ", "));} \\ Michel Marcus, Nov 21 2013
Formula
a(n) = 8*(binomial(n+2, 2)-1)+5, hence subsequence of A004770 (5 (mod 8) numbers).
G.f.: (5 + 6*x - 3*x^2)/(1-x)^3.
a(n) = A061037(2*n+1) = (2*n+3)^2 - 4. For A061037: a(2*n+1) = (2*n+1)*(2*n+5) = (2*n+3)^2-4. - Paul Curtz, Sep 24 2008
a(n) = 8*(n+1) + a(n-1) for n > 0, a(0)=5. - Vincenzo Librandi, Aug 08 2010
From Ilya Gutkovskiy, May 22 2016: (Start)
E.g.f.: (5 + 4*x*(4 + x))*exp(x).
Sum_{n>=0} 1/a(n) = 1/3. (End)
Sum_{n>=0} (-1)^n/a(n) = 1/6. - Amiram Eldar, Oct 08 2023
Extensions
More terms from Emeric Deutsch, Feb 24 2005
Comments