A006327
a(n) = Fibonacci(n) - 3. Number of total preorders.
Original entry on oeis.org
0, 2, 5, 10, 18, 31, 52, 86, 141, 230, 374, 607, 984, 1594, 2581, 4178, 6762, 10943, 17708, 28654, 46365, 75022, 121390, 196415, 317808, 514226, 832037, 1346266, 2178306, 3524575, 5702884, 9227462, 14930349, 24157814, 39088166, 63245983, 102334152, 165580138
Offset: 4
G.f. = 2*x^5 + 5*x^6 + 10*x^7 + 18*x^8 + 31*x^9 + 52*x^10 + 86*x^11 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..1000
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- A. Sapounakis, I. Tasoulas and P. Tsikouras, On the Dominance Partial Ordering of Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.5.
- A. B. Vinokur, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian); English translation in Cybernetics 21, Issue 6 (1986), 692-696.
- Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, arXiv:cs/0410013 [cs.DM], 2004-2005.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Cf.
A000045,
A001611,
A000071,
A157725,
A001911,
A157726,
A006327,
A157727,
A157728,
A157729,
A167616. [Added by
N. J. A. Sloane, Jun 25 2010 in response to a comment from
Aviezri S. Fraenkel]
-
List([4..45], n-> Fibonacci(n)-3) # G. C. Greubel, Jul 13 2019
-
[Fibonacci(n)-3: n in [4..45]]; // G. C. Greubel, Jul 13 2019
-
with(combinat):a:=n->sum(fibonacci(j),j=3..n): seq(a(n),n=2..40); # Zerinvary Lajos, Oct 03 2007
A006327:=(2+z)/(z-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
Fibonacci[Range[4, 45]] - 3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
-
a(n)=fibonacci(n)-3 \\ Charles R Greathouse IV, Feb 03 2014
-
[fibonacci(n)-3 for n in (4..45)] # G. C. Greubel, Jul 13 2019
A350354
Number of up/down (or down/up) patterns of length n.
Original entry on oeis.org
1, 1, 1, 3, 11, 51, 281, 1809, 13293, 109899, 1009343, 10196895, 112375149, 1341625041, 17249416717, 237618939975, 3491542594727, 54510993341523, 901106621474801, 15723571927404189, 288804851413993941, 5569918636750820751, 112537773142244706427
Offset: 0
The a(0) = 1 through a(4) = 11 patterns:
() (1) (1,2) (1,2,1) (1,2,1,2)
(1,3,2) (1,2,1,3)
(2,3,1) (1,3,1,2)
(1,3,2,3)
(1,3,2,4)
(1,4,2,3)
(2,3,1,2)
(2,3,1,3)
(2,3,1,4)
(2,4,1,3)
(3,4,1,2)
This is the up/down (or down/up) case of
A345194.
A205497 are the Euler zig-zag polynomials.
A335515 counts patterns matching (1,2,3).
A349058 counts weakly alternating patterns.
A350252 counts non-alternating patterns.
-
# Using the recurrence by Kyle Petersen from A205497.
G := proc(n) option remember; local F;
if n = 0 then 1/(1 - q*x) else F := G(n - 1);
simplify((p/(p - q))*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
A350354 := n -> 2^n*subs({p = 1, q = 1, x = 1/2}, G(n)*(1 - x)^(n + 1)):
seq(A350354(n), n = 0..22); # Peter Luschny, Jun 03 2024
-
allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]
-
F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
R(n,k) = {Vec(if(k==1, 0, F(k-2,-x)/F(k-1,x)-1) + x + O(x*x^n))}
seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022
A006328
Total preorders.
Original entry on oeis.org
5, 24, 79, 223, 579, 1432, 3434, 8071, 18714, 42991, 98127, 222965, 505008, 1141236, 2574845, 5802636, 13065935, 29403439, 66141015, 148734156, 334391354, 751675943, 1689494650, 3797059555, 8533209055, 19176039925, 43091557504, 96831330948, 217586892705
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Colin Barker, Table of n, a(n) for n = 3..1000
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,4,1,-1).
-
CoefficientList[ Series[(5 + 4x - 2x^2 - x^3)/(1 - 4x + 3x^2 + 4x^3 - 4 x^4 - x^5 + x^6), {x, 0, 30}], x] (* Robert G. Wilson v, Mar 12 2017 *)
-
Vec(x^3*(1 + x)*(5 - x - x^2) / ((1 - x)*(1 - x - x^2)*(1 - 2*x - x^2 + x^3)) + O(x^40)) \\ Colin Barker, Mar 19 2017
A006326
Total preorders.
Original entry on oeis.org
1, 5, 24, 122, 680, 4155, 27776, 202084, 1592064, 13513825, 123025408, 1196165886, 12374422528, 135740585015, 1573990072320, 19239037403528, 247255523459072, 3333340694137725, 47039231504678912, 693488743931379010, 10661950808321949696, 170659875799127955955
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
# After Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> (n-2)*b(n-1, 1)/2: seq(a(n), n = 3..23); # Peter Luschny, Oct 27 2017
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
a[n_] := (n-2) b[n-1, 1]/2;
Array[a, 22, 3] (* Jean-François Alcover, Jun 01 2019, from Maple *)
A006329
Total preorders.
Original entry on oeis.org
1, 10, 79, 602, 4682, 38072, 326570, 2964992, 28506383, 289973248, 3116028865, 35308153600, 421048783264, 5273818620928, 69250997724484, 951571372015616, 13658940616055885, 204474999700324352, 3187421031909630947, 51663403849575956480
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-5 of 5 results.
Comments