cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080040 a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0)=2, a(1)=2.

Original entry on oeis.org

2, 2, 8, 20, 56, 152, 416, 1136, 3104, 8480, 23168, 63296, 172928, 472448, 1290752, 3526400, 9634304, 26321408, 71911424, 196465664, 536754176, 1466439680, 4006387712, 10945654784, 29904084992, 81699479552, 223207129088, 609813217280, 1666040692736, 4551707820032
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003

Keywords

Comments

The Lucas sequence V_n(2,-2). - Jud McCranie, Mar 02 2012
The signed version 2, -2, 8, -20, 56, -152, 416, -1136, 3104, -8480, 23168, ... is the Lucas sequence V(-2,-2). - R. J. Mathar, Jan 08 2013
After a(2) equals round((1+sqrt(3))^n) = 1, 3, 7, 20, 56, 152, ... - Jeremy Gardiner, Aug 11 2013
Also the number of independent vertex sets and vertex covers in the n-sunlet graph. - Eric W. Weisstein, Sep 27 2017

Crossrefs

Programs

  • Haskell
    a080040 n = a080040_list !! n
    a080040_list =
       2 : 2 : map (* 2) (zipWith (+) a080040_list (tail a080040_list))
    -- Reinhard Zumkeller, Oct 15 2011
    
  • Magma
    a:=[2,2]; [n le 2 select a[n] else 2*Self(n-1) + 2*Self(n-2):n in [1..27]]; Marius A. Burtea, Jan 20 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 27); Coefficients(R!( (2-2*x)/(1-2*x-2*x^2))); // Marius A. Burtea, Jan 20 2020
  • Mathematica
    CoefficientList[Series[(2 - 2 t)/(1 - 2 t - 2 t^2), {t, 0, 30}], t]
    With[{c = {2, 2}}, LinearRecurrence[c, c, 20]] (* Harvey P. Dale, Apr 24 2016 *)
    Round @ Table[LucasL[n, Sqrt[2]] 2^(n/2), {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[(1 - Sqrt[3])^n + (1 + Sqrt[3])^n, {n, 0, 20}] // Expand (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=([0,1; 2,2]^n*[2;2])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(2,2,2,2, lambda n: 0); [next(it) for i in range(27)] # Zerinvary Lajos, Jul 16 2008
    
  • Sage
    [lucas_number2(n,2,-2) for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (2-2*x)/(1-2*x-2*x^2).
a(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.
a(n) = 2*A026150(n). - Philippe Deléham, Nov 19 2008
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(3*k-1)/(x*(3*k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
a(n) = 2*2^floor(n/2)*A002531(n). - Ralf Stephan, Sep 08 2013
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 3*x^2) )^n for n >= 1. - Peter Bala, Jun 29 2015
E.g.f.: 2*exp(x)*cosh(sqrt(3)*x). - Stefano Spezia, Mar 02 2024