A082611
a(n) = Sum_{i=1..k} T(i,k)/(i*(k-i+1)), (k>=1, 1<=n<=k), where T(,) is given in A080046.
Original entry on oeis.org
1, 2, 3, 6, 30, 1202, 3207410, 7925688042914, 251265071655132399283480418, 79278147718866210084428917149363438284974325840642
Offset: 1
A052849
a(0) = 0; a(n) = 2*n! (n >= 1).
Original entry on oeis.org
0, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000, 2248001455555215360000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 520.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 490.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 817.
- Anna Khmelnitskaya, Gerard van der Laan, and Dolf Talmanm, The Number of Ways to Construct a Connected Graph: A Graph-Based Generalization of the Binomial Coefficients, J. Int. Seq. (2023) Art. 23.4.3. See p. 11.
- T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Index entries for sequences related to factorial base representation.
Essentially the same sequence as
A098558.
Row 3 of
A276955 (from term a(2)=4 onward).
-
a052849 n = if n == 0 then 0 else 2 * a000142 n
a052849_list = 0 : fs where fs = 2 : zipWith (*) [2..] fs
-- Reinhard Zumkeller, Aug 31 2014
-
[0] cat [2*Factorial(n-1): n in [2..25]]; // Vincenzo Librandi, Nov 03 2014
-
spec := [S,{B=Cycle(Z),C=Cycle(Z),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0}, 2Range[20]!] (* Harvey P. Dale, Jul 13 2013 *)
-
a(n)=if(n<1,0,n!*2)
A079542
Triangular array: T(n,1) = T(n,n) = n and T(n,k) = lcm(T(n-1,k-1), T(n-1,k)) for 1 < k < n.
Original entry on oeis.org
1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 12, 6, 12, 5, 6, 60, 12, 12, 60, 6, 7, 60, 60, 12, 60, 60, 7, 8, 420, 60, 60, 60, 60, 420, 8, 9, 840, 420, 60, 60, 60, 420, 840, 9, 10, 2520, 840, 420, 60, 60, 420, 840, 2520, 10, 11, 2520, 2520, 840, 420, 60, 420, 840, 2520, 2520, 11, 12
Offset: 1
Triangle begins:
1
2 2
3 2 3
4 6 6 4
5 12 6 12 5
6 60 12 12 60 6
7 60 60 12 60 60 7
-
T(n,k) = if ((k==1) || (k==n), n, lcm(T(n-1,k-1), T(n-1,k)));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 25 2018
A213081
Exclusive-or based Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) XOR T(n-1,k), where XOR is the bitwise exclusive-or operator.
Original entry on oeis.org
1, 2, 2, 3, 0, 3, 4, 3, 3, 4, 5, 7, 0, 7, 5, 6, 2, 7, 7, 2, 6, 7, 4, 5, 0, 5, 4, 7, 8, 3, 1, 5, 5, 1, 3, 8, 9, 11, 2, 4, 0, 4, 2, 11, 9, 10, 2, 9, 6, 4, 4, 6, 9, 2, 10, 11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11, 12, 3, 3, 4, 13, 2, 2, 13, 4, 3, 3, 12, 13, 15
Offset: 1
Table begins:
1;
2, 2;
3, 0, 3;
4, 3, 3, 4;
5, 7, 0, 7, 5;
6, 2, 7, 7, 2, 6;
7, 4, 5, 0, 5, 4, 7;
8, 3, 1, 5, 5, 1, 3, 8;
9, 11, 2, 4, 0, 4, 2, 11, 9;
10, 2, 9, 6, 4, 4, 6, 9, 2, 10;
11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11;
Cf.
A007318 - Pascal's triangle read by rows.
Cf.
A051597 - Pascal's triangle, begin and end n-th row with n+1, read by rows.
Cf.
A080046 - Multiplicative Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) * T(n-1,k).
-
src = [0]*1024
dst = [0]*1024
for i in range(1,39):
dst[0] = dst[i-1] = i
for j in range(1,i-1):
dst[j] = src[j-1]^src[j]
for j in range(i):
src[j] = dst[j]
print(dst[j], end=',')
A317644
Triangle read by rows: multiplicative version of Pascal's triangle except n-th row begins and ends with (n+1)-st prime.
Original entry on oeis.org
2, 3, 3, 5, 9, 5, 7, 45, 45, 7, 11, 315, 2025, 315, 11, 13, 3465, 637875, 637875, 3465, 13, 17, 45045, 2210236875, 406884515625, 2210236875, 45045, 17, 19, 765765, 99560120034375, 899311160300888671875, 899311160300888671875, 99560120034375, 765765, 19, 23, 14549535, 76239655318123171875, 89535527067809533413858673095703125, 808760563041730681160065242862701416015625, 89535527067809533413858673095703125, 76239655318123171875, 14549535, 23
Offset: 0
Triangle begins:
2;
3, 3;
5, 9, 5;
7, 45, 45, 7;
11, 315, 2025, 315, 11;
13, 3465, 637875, 637875, 3465, 13;
...
Formatted as a symmetric triangle:
.
2
.
3 3
.
5 9 5
.
7 45 45 7
.
11 315 2025 315 11
.
13 3465 637875 637875 3465 13
...
-
t = {{2}};
Table[AppendTo[
t, {Prime[i],
Table[
t[[i - 1]][[j]]*t[[i - 1]][[j + 1]], {j,
1, (t[[i - 1]] // Length) - 1}], Prime[i]} // Flatten], {i, 2, 10}] //
Last // Flatten
t={}; Do[r={}; Do[If[k==0||k==n, m=Prime[n + 1], m=t[[n, k]]t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* Vincenzo Librandi, Sep 03 2018 *)
Showing 1-5 of 5 results.
Comments