cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082611 a(n) = Sum_{i=1..k} T(i,k)/(i*(k-i+1)), (k>=1, 1<=n<=k), where T(,) is given in A080046.

Original entry on oeis.org

1, 2, 3, 6, 30, 1202, 3207410, 7925688042914, 251265071655132399283480418, 79278147718866210084428917149363438284974325840642
Offset: 1

Views

Author

André F. Labossière, Sep 23 2004

Keywords

Comments

Row sums of residual multiplicative Pascal triangle.

Crossrefs

Cf. A080046.

A052849 a(0) = 0; a(n) = 2*n! (n >= 1).

Original entry on oeis.org

0, 2, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600, 79833600, 958003200, 12454041600, 174356582400, 2615348736000, 41845579776000, 711374856192000, 12804747411456000, 243290200817664000, 4865804016353280000, 102181884343418880000, 2248001455555215360000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

For n >= 1 a(n) is the size of the centralizer of a transposition in the symmetric group S_(n+1). - Ahmed Fares (ahmedfares(AT)my-deja.com), May 12 2001
For n > 0, a(n) = n! - A062119(n-1) = number of permutations of length n that have two specified elements adjacent. For example, a(4) = 12 as of the 24 permutations, 12 have say 1 and 2 adjacent: 1234, 2134, 1243, 2143, 3124, 3214, 4123, 4213, 3412, 3421, 4312, 4321. - Jon Perry, Jun 08 2003
With different offset, denominators of certain sums computed by Ramanujan.
From Michael Somos, Mar 04 2004: (Start)
Stirling transform of a(n) = [2, 4, 12, 48, 240, ...] is A000629(n) = [2, 6, 26, 150, 1082, ...].
Stirling transform of a(n-1) = [1, 2, 4, 12, 48, ...] is A007047(n-1) = [1, 3, 11, 51, 299, ...].
Stirling transform of a(n) = [1, 4, 12, 48, 240, ...] is A002050(n) = [1, 5, 25, 149, 1081, ...].
Stirling transform of 2*A006252(n) = [2, 2, 4, 8, 28, ...] is a(n) = [2, 4, 12, 48, 240, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 2*A005649(n) = [4, 16, 88, 616, ...].
Stirling transform of a(n+1) = [4, 12, 48, 240, ...] is 4*A083410(n) = [4, 16, 88, 616, ...]. (End)
Number of {12, 12*, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
Permanent of the (0, 1)-matrices with (i, j)-th entry equal to 0 if and only if it is in the border but not the corners. The border of a matrix is defined the be the first and the last row, together with the first and the last column. The corners of a matrix are the entries (i = 1, j = 1), (i = 1, j = n), (i = n, j = 1) and (i = n, j = n). - Simone Severini, Oct 17 2004

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 520.

Crossrefs

Essentially the same sequence as A098558.
Row 3 of A276955 (from term a(2)=4 onward).

Programs

  • Haskell
    a052849 n = if n == 0 then 0 else 2 * a000142 n
    a052849_list = 0 : fs where fs = 2 : zipWith (*) [2..] fs
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Magma
    [0] cat [2*Factorial(n-1): n in [2..25]]; // Vincenzo Librandi, Nov 03 2014
  • Maple
    spec := [S,{B=Cycle(Z),C=Cycle(Z),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Join[{0}, 2Range[20]!] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    a(n)=if(n<1,0,n!*2)
    

Formula

a(n) = T(n, 2) for n>1, where T is defined as in A080046.
D-finite with recurrence: {a(0) = 0, a(1) = 2, (-1 - n)*a(n+1) + a(n+2)=0}.
E.g.f.: 2*x/(1-x).
a(n) = A090802(n, n - 1) for n > 0. - Ross La Haye, Sep 26 2005
For n >= 1, a(n) = (n+3)!*Sum_{k=0..n+2} (-1)^k*binomial(2, k)/(n + 3 - k). - Milan Janjic, Dec 14 2008
G.f.: 2/Q(0) - 2, where Q(k) = 1 - x*(k + 1)/(1 - x*(k + 1)/Q(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Apr 01 2013
G.f.: -2 + 2/Q(0), where Q(k) = 1 + k*x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
G.f.: W(0) - 2 , where W(k) = 1 + 1/( 1 - x*(k+1)/( x*(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A245334(n, n-1), n > 0. - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=1} 1/a(n) = (e-1)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (e-1)/(2*e). (End)

Extensions

More terms from Ross La Haye, Sep 26 2005

A079542 Triangular array: T(n,1) = T(n,n) = n and T(n,k) = lcm(T(n-1,k-1), T(n-1,k)) for 1 < k < n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 12, 6, 12, 5, 6, 60, 12, 12, 60, 6, 7, 60, 60, 12, 60, 60, 7, 8, 420, 60, 60, 60, 60, 420, 8, 9, 840, 420, 60, 60, 60, 420, 840, 9, 10, 2520, 840, 420, 60, 60, 420, 840, 2520, 10, 11, 2520, 2520, 840, 420, 60, 420, 840, 2520, 2520, 11, 12
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 22 2003

Keywords

Comments

T(2*n-1,n) = A058312(n-1) for n <= 13.

Examples

			Triangle begins:
  1
  2  2
  3  2  3
  4  6  6  4
  5 12  6 12  5
  6 60 12 12 60  6
  7 60 60 12 60 60  7
		

Crossrefs

Cf. A080046.
T(n, 2) = A003418(n-1) for n > 2.

Programs

  • PARI
    T(n,k) = if ((k==1) || (k==n), n, lcm(T(n-1,k-1), T(n-1,k)));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 25 2018

A213081 Exclusive-or based Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) XOR T(n-1,k), where XOR is the bitwise exclusive-or operator.

Original entry on oeis.org

1, 2, 2, 3, 0, 3, 4, 3, 3, 4, 5, 7, 0, 7, 5, 6, 2, 7, 7, 2, 6, 7, 4, 5, 0, 5, 4, 7, 8, 3, 1, 5, 5, 1, 3, 8, 9, 11, 2, 4, 0, 4, 2, 11, 9, 10, 2, 9, 6, 4, 4, 6, 9, 2, 10, 11, 8, 11, 15, 2, 0, 2, 15, 11, 8, 11, 12, 3, 3, 4, 13, 2, 2, 13, 4, 3, 3, 12, 13, 15
Offset: 1

Views

Author

Alex Ratushnyak, Jun 04 2012

Keywords

Examples

			Table begins:
   1;
   2,  2;
   3,  0,  3;
   4,  3,  3,  4;
   5,  7,  0,  7,  5;
   6,  2,  7,  7,  2,  6;
   7,  4,  5,  0,  5,  4,  7;
   8,  3,  1,  5,  5,  1,  3,  8;
   9, 11,  2,  4,  0,  4,  2, 11,  9;
  10,  2,  9,  6,  4,  4,  6,  9,  2, 10;
  11,  8, 11, 15,  2,  0,  2, 15, 11,  8, 11;
		

Crossrefs

Cf. A007318 - Pascal's triangle read by rows.
Cf. A051597 - Pascal's triangle, begin and end n-th row with n+1, read by rows.
Cf. A080046 - Multiplicative Pascal triangle, read by rows: T(n,1)=T(n,n)=n and T(n,k) = T(n-1,k-1) * T(n-1,k).

Programs

  • Python
    src = [0]*1024
    dst = [0]*1024
    for i in range(1,39):
        dst[0] = dst[i-1] = i
        for j in range(1,i-1):
            dst[j] = src[j-1]^src[j]
        for j in range(i):
            src[j] = dst[j]
            print(dst[j], end=',')

A317644 Triangle read by rows: multiplicative version of Pascal's triangle except n-th row begins and ends with (n+1)-st prime.

Original entry on oeis.org

2, 3, 3, 5, 9, 5, 7, 45, 45, 7, 11, 315, 2025, 315, 11, 13, 3465, 637875, 637875, 3465, 13, 17, 45045, 2210236875, 406884515625, 2210236875, 45045, 17, 19, 765765, 99560120034375, 899311160300888671875, 899311160300888671875, 99560120034375, 765765, 19, 23, 14549535, 76239655318123171875, 89535527067809533413858673095703125, 808760563041730681160065242862701416015625, 89535527067809533413858673095703125, 76239655318123171875, 14549535, 23
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 02 2018

Keywords

Examples

			Triangle begins:
   2;
   3,      3;
   5,      9,      5;
   7,     45,     45,      7;
  11,    315,   2025,    315,     11;
  13,   3465, 637875, 637875,   3465,     13;
  ...
Formatted as a symmetric triangle:
.
                       2
.
                   3       3
.
               5       9       5
.
           7      45      45       7
.
      11      315    2025     315     11
.
  13     3465   637875  637875   3465     13
...
		

Crossrefs

Programs

  • Mathematica
    t = {{2}};
    Table[AppendTo[
        t, {Prime[i],
          Table[
           t[[i - 1]][[j]]*t[[i - 1]][[j + 1]], {j,
            1, (t[[i - 1]] // Length) - 1}], Prime[i]} // Flatten], {i, 2, 10}] //
       Last // Flatten
    t={}; Do[r={}; Do[If[k==0||k==n, m=Prime[n + 1], m=t[[n, k]]t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* Vincenzo Librandi, Sep 03 2018 *)

Formula

From Rémy Sigrist, Sep 02 2018: (Start)
A007949(T(n+1, k+1)) = A028326(n, k) for any n >= 0 and k = 0..n.
A112765(T(n+1, k+1)) = A007318(n, k) for any n > 0 and k = 0..n.
(End)
Showing 1-5 of 5 results.