A081128
12th binomial transform of (0,1,0,0,0,0,0,0,...).
Original entry on oeis.org
0, 1, 24, 432, 6912, 103680, 1492992, 20901888, 286654464, 3869835264, 51597803520, 681091006464, 8916100448256, 115909305827328, 1497904875307008, 19258776968232960, 246512345193381888
Offset: 0
A104002
Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns that start with 1 except one fixed pattern and containing it exactly once.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 5, 32, 27, 8, 1, 6, 80, 108, 48, 10, 1, 7, 192, 405, 256, 75, 12, 1, 8, 448, 1458, 1280, 500, 108, 14, 1, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 10, 2304, 17496, 28672, 18750, 6480, 1372, 192, 18, 1, 11, 5120, 59049, 131072
Offset: 2
Triangle begins:
1;
2, 1;
3, 4, 1;
4, 12, 6, 1;
5, 32, 27, 8, 1;
6, 80, 108, 48, 10, 1;
7, 192, 405, 256, 75, 12, 1;
8, 448, 1458, 1280, 500, 108, 14, 1;
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150).
- T. Mansour, Permutations containing and avoiding certain patterns, arXiv:math/9911243 [math.CO], 1999-2000.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Cf. Left-edge columns include
A001787,
A027471,
A002697,
A053464,
A053469,
A027473,
A053539,
A053540,
A053541,
A081127,
A081128.
-
Table[(n - k + 1) (k - 1)^(n - k), {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
A230539
a(n) = 3*n*2^(3*n-1).
Original entry on oeis.org
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
-
[3*n*2^(3*n-1): n in [0..20]];
-
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Table[3 n 2^(3 n - 1), {n,0,20}]
LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
A230540
a(n) = 2*n*3^(2*n-1).
Original entry on oeis.org
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
-
[2*n*3^(2*n-1): n in [0..20]];
-
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A218018
Triangle, read by rows, where T(n,k) = k!*C(n, k)*11^(n-k) for n>=0, k=0..n.
Original entry on oeis.org
1, 11, 1, 121, 22, 2, 1331, 363, 66, 6, 14641, 5324, 1452, 264, 24, 161051, 73205, 26620, 7260, 1320, 120, 1771561, 966306, 439230, 159720, 43560, 7920, 720, 19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040, 214358881
Offset: 0
Triangle begins:
1;
11, 1;
121, 22, 2;
1331, 363, 66, 6;
14641, 5324, 1452, 264, 24;
161051, 73205, 26620, 7260, 1320, 120;
1771561, 966306, 439230, 159720, 43560, 7920, 720;
19487171, 12400927, 6764142, 3074610, 1118040, 304920, 55440, 5040; etc.
-
[Factorial(n)/Factorial(n-k)*11^(n-k): k in [0..n], n in [0..10]];
-
Flatten[Table[n!/(n-k)! * 11^(n-k), {n, 0, 10}, {k, 0, n}]]
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Showing 1-6 of 6 results.
Comments