cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A035513 Wythoff array read by falling antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1

Views

Author

Keywords

Comments

T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy
Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - Howard A. Landman, Sep 25 2001
The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - Clark Kimberling, Feb 08 2003
For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - Gerald McGarvey, Sep 18 2004
From Clark Kimberling, Nov 14 2007: (Start)
Except for initial terms in some cases:
(Row 1) = A000045
(Row 2) = A000032
(Row 3) = A006355
(Row 4) = A022086
(Row 5) = A022087
(Row 6) = A000285
(Row 7) = A022095
(Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
(Row 9) = A022112
(Column 1) = A003622 = AA Wythoff sequence
(Column 2) = A035336 = BA Wythoff sequence
(Column 3) = A035337 = ABA Wythoff sequence
(Column 4) = A035338 = BBA Wythoff sequence
(Column 5) = A035339 = ABBA Wythoff sequence
(Column 6) = A035340 = BBBA Wythoff sequence
Main diagonal = A020941. (End)
The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - Clark Kimberling, Jun 03 2011
If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - Clark Kimberling, Jun 17 2016
All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - Michel Dekking, Aug 31 2017
The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - Luc Rousseau, Sep 28 2017
Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - Clark Kimberling, Mar 05 2020
From Clark Kimberling, May 26 2020: (Start)
For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n. Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)). Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1. Thus, in the limiting sense:
38.19...% of the numbers m have least term 1;
23.60...% have least term 2;
14.58...% have least term 3;
9.01...% have least term 5, etc. (End)
Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - Amiram Eldar, Jun 11 2021
From Clark Kimberling, Jun 04 2025: (Start)
Let u(n) = (T(n,1),T(n,2)) mod 2. The positive integers (A000027) are partitioned into 4 sets (sequences):
{n : u(n) = (0,0)} = (3, 5, 9, 15, 19, 25, 29,...) = 1 + 2*A190429
{n: u(n) = (0,1)} = (2, 6, 12, 16, 18, 22, 28,...) = A191331
{n : u(n) = (1,0)} = (1, 7, 11, 13, 17, 21, 23,...) = A086843
{n: u(n) = (1,1)} = (4, 8, 10, 14, 20, 24, 26,...) = A191330.
Let v(n) = (T(n,1),T(n,2)) mod 3. The positive integers are partitioned into 9 sets (sequences):
{n : v(n) = (0,0)} = (4, 13, 19, 28, 43, 52,...) = 1 + 3*A190434
{n: v(n) = (0,1)} = (3, 12, 27, 36, 42, 51,...) = 3*A140399
{n : v(n) = (0,2)} = (5, 11, 20, 35, 44, 50,...) = 2 + 3*A190439
{n: v(n) = (1,0)} = (9, 18, 24, 33, 48, 57,...) = 3*A140400
{n: v(n) = (1,1)} = (2, 8, 17, 26, 32, 41,...) = A384601
{n : v(n) = (1,2)} = (1, 10, 16, 25, 34, 40,...) = A384602
{n: v(n) = (2,0)} = (14, 23, 29, 38, 47, 53,...) = 2 + 3*A190438
{n: v(n) = (2,1)} = (7, 22, 31, 37, 46, 61,...) = 1 + 3*A190433
{n : v(n) = (2,2)} = (6, 15, 21, 30, 39, 45,...) = 3*A140398.
Conjecture: If m >= 2, then {(T(n,1), T(n,2)) mod m} has cardinality m^2. (End)

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
  25   41   66  107  173  280  453  733 1186 1919 3105 ...
  27   44   71  115  186  301  487  788 1275 2063 3338 ...
  ...
The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0     1  |   1    2    3    5    8   13   21   34   55   89  144   ...
1     3  |   4    7   11   18   29   47   76  123  199  322  521   ...
2     4  |   6   10   16   26   42   68  110  178  288  466  754   ...
3     6  |   9   15   24   39   63  102  165  267  432  699 1131   ...
4     8  |  12   20   32   52   84  136  220  356  576  932 1508   ...
5     9  |  14   23   37   60   97  157  254  411  665 1076 1741   ...
6    11  |  17   28   45   73  118  191  309  500  809 1309 2118   ...
7    12  |  19   31   50   81  131  212  343  555  898 1453 2351   ...
8    14  |  22   36   58   94  152  246  398  644 1042 1686 2728   ...
9    16  |  25   41   66  107  173  280  453  733 1186 1919 3105   ...
10   17  |  27   44   71  115  186  301  487  788 1275 2063 3338   ...
11   19  |  30   49   79   ...
12   21  |  33   54   87   ...
13   22  |  35   57   92   ...
14   24  |  38   62   ...
15   25  |  40   65   ...
16   27  |  43   70   ...
17   29  |  46   75   ...
18   30  |  48   78   ...
19   32  |  51   83   ...
20   33  |  53   86   ...
21   35  |  56   91   ...
22   37  |  59   96   ...
23   38  |  61   99   ...
24   40  |  64   ...
25   42  |  67   ...
26   43  |  69   ...
27   45  |  72   ...
28   46  |  74   ...
29   48  |  77   ...
30   50  |  80   ...
31   51  |  82   ...
32   53  |  85   ...
33   55  |  88   ...
34   56  |  90   ...
35   58  |  93   ...
36   59  |  95   ...
37   61  |  98   ...
38   63  |     ...
   ...
Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
From _Peter Munn_, Jun 11 2021: (Start)
The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
Give each rabbit a number, 0 for the initial rabbit.
When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
                                                                 0
                                                                 :
                                       ,-------------------------:
                                       :                         :
                       ,---------------:                         1
                       :               :                         :
              ,--------:               2               ,---------:
              :        :               :               :         :
        ,-----:        3         ,-----:         ,-----:         4
        :     :        :         :     :         :     :         :
     ,--:     5     ,--:     ,---:     6     ,---:     7     ,---:
     :  :     :     :  :     :   :     :     :   :     :     :   :
  ,--:  8  ,--:  ,--:  9  ,--:  10  ,--:  ,--:  11  ,--:  ,--:  12
  :  :  :  :  :  :  :  :  :  :   :  :  :  :  :   :  :  :  :  :   :
  : 13  :  : 14  : 15  :  : 16   :  : 17  : 18   :  : 19  : 20   :
The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
(End)
		

References

  • John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.

Crossrefs

See comments above for more cross-references.
Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
For two versions of the extended Wythoff array, see A287869, A287870.

Programs

  • Maple
    W:= proc(n,k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0,1], [1,1]])^(k+1))[1,2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
    A035513 := proc(r, c)
        option remember;
        if c = 1 then
            A003622(r) ;
        else
            A022342(1+procname(r, c-1)) ;
        end if;
    end proc:
    seq(seq(A035513(r,d-r),r=1..d-1),d=2..15) ; # R. J. Mathar, Jan 25 2015
  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
  • PARI
    T(n,k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
    for(k=0,9,for(n=1,k, print1(T(n,k+1-n)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Python
    from sympy import fibonacci as F, sqrt
    import math
    tau = (sqrt(5) + 1)/2
    def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
    for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 23 2017
    
  • Python
    from math import isqrt, comb
    from gmpy2 import fib2
    def A035513(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        b, c = fib2(a-x+2)
        return b*(x+isqrt(5*x*x)>>1)+c*(x-1) # Chai Wah Wu, Jun 26 2025

Formula

T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - Henry Bottomley, Dec 10 2001
T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - R. J. Mathar, Sep 03 2016

Extensions

Comments about the extended Wythoff array added by N. J. A. Sloane, Mar 07 2016

A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed).

Original entry on oeis.org

1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800
Offset: 1

Author

Antti Karttunen, Apr 27 2015

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.

Examples

			The top left corner of the array:
     1,     2,     3,     5,      6,      7,      8,      9,     10,     11,     13
     4,    12,    16,    22,     48,     52,     60,     64,     66,     70,     76
    18,    72,    90,   114,    360,    378,    432,    450,    456,    474,    498
    96,   480,   576,   696,   2880,   2976,   3360,   3456,   3480,   3576,   3696
   600,  3600,  4200,  4920,  25200,  25800,  28800,  29400,  29520,  30120,  30840
  4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560
  ...
		

Crossrefs

Transpose: A257505.
Inverse permutation: A257504.
Row index: A257679, Column index: A257681.
Row 1: A256450, Row 2: A257692, Row 3: A257693.
Columns 1-3: A001563, A062119, A130744 (without their initial zero-terms).
Column 4: A213167 (without the initial one).
Column 5: A052571 (without initial zeros).
Cf. also permutations A255565 and A255566.
Thematically similar arrays: A083412, A135764, A246278.

Programs

Formula

A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)).

Extensions

Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016

A095898 The (1,1)-term of the 3 X 3 matrix M^n, where M = [1,2,3 / 4,7,11 / 6,10,16].

Original entry on oeis.org

1, 27, 649, 15603, 375121, 9018507, 216819289, 5212681443, 125321173921, 3012920855547, 72435421707049, 1741463041824723, 41867548425500401, 1006562625253834347, 24199370554517524729, 581791455933674427843, 13987194312962703792961, 336274454967038565458907
Offset: 1

Author

Gary W. Adamson, Jun 12 2004

Keywords

Examples

			a(4)=15603 because M^4 = [15603,26590,42193 / 56642,96527,153169 / 82078,139874,221952]. Alternatively, a(4) = 24*649+27 = 15603.
		

Crossrefs

Programs

  • Maple
    a[1]:=1: a[2]:=27: for n from 3 to 18 do a[n]:=24*a[n-1]+a[n-2] od: seq(a[n],n=1..18);
  • PARI
    Vec(x*(1 + 3*x) / (1 - 24*x - x^2) + O(x^30)) \\ Colin Barker, Mar 02 2017

Formula

a(n) = 24*a(n-1) + a(n-2) for n>=3; a(1)=1, a(2)=27 (follows from the minimal polynomial of the matrix M).
G.f.: (x+3*x^2) / (1-24*x-x^2). - Philippe Deléham, Nov 21 2008
a(n) = (-12 - sqrt(145))^(-n)*(87+7*sqrt(145) + (-289-24*sqrt(145))^n*(87-7*sqrt(145))) / 58. - Colin Barker, Mar 02 2017

Extensions

Corrected by T. D. Noe, Nov 07 2006
Edited by N. J. A. Sloane, Dec 16 2006

A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".

Original entry on oeis.org

6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1

Author

A.H.M. Smeets, Apr 25 2024

Keywords

Crossrefs

Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
A035336 <------ A134861
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
Suffixes 10^n, where ^ means n times repeated concatenation, are the (n+1)-th columns in the Wythoff array A083412 and A035513 (n >= 0).

Formula

Equals {A134859}\{A151915}.
a(n) = A134863(n) - 1 = A035338(n) + 1.
a(n) = a(n-1) + 8 + 5*A005614(n-2) = a(n-1) + F(6) + F(5)*A005614(n-2), n > 1, where F(k) is the k-th Fibonacci number (A000045).

A352583 a(n) is the value of the cell in the Wythoff array that lies in the next row and same column as the cell containing n.

Original entry on oeis.org

4, 7, 11, 6, 18, 9, 10, 29, 12, 15, 16, 14, 47, 17, 20, 24, 19, 26, 22, 23, 76, 25, 28, 32, 27, 39, 30, 31, 42, 33, 36, 37, 35, 123, 38, 41, 45, 40, 52, 43, 44, 63, 46, 49, 50, 48, 68, 51, 54, 58, 53, 60, 56, 57, 199, 59, 62, 66, 61, 73, 64, 65, 84, 67, 70, 71, 69, 102, 72, 75
Offset: 1

Author

Michel Marcus, Mar 21 2022

Keywords

Comments

From Kevin Ryde, Jun 05 2022: (Start)
a(n) is n with the "odd" part (A348853) of its Zeckendorf representation increased to the next greater "odd" number.
This increase is Zeckendorf digits +10 or +100 at the odd part, according to whether the final digits there are ..101 or ..001, respectively.
A354321(n) is the first of those three digits so that a(n) = n + Fibonacci(A035612(n) + 3 - A354321(n)).
(End)

Examples

			The Wythoff array (A035513 or A083412) begins:
   1    2    3    5    8 ...
   4    7   11   18   29 ...
   6   10   16   26   42 ...
   ...
so a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 6, ...
		

Crossrefs

Cf. A035513 and A083412 (Wythoff array), A003603 (row number), A035612 (column number).
Cf. A348853 (odd part), A354321 (above 01), A000045 (Fibonacci numbers).
Cf. A022342 (same row, next column).
Cf. A349102 (binary increase odd).

Programs

  • PARI
    T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
    cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break););); \\ see A003603 and A035612
    a(n) = {my(pos = cell(n)); T(pos[1]+1, pos[2]);}
    
  • PARI
    { my(phi=quadgen(5),s=phi-1,c=2*phi-3);
    a(n) = my(t=n,k=3,r);
      until(r
    				
Showing 1-5 of 5 results.