A035513 Wythoff array read by falling antidiagonals.
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1
A257503 Square array A(row,col) read by antidiagonals: A(1,col) = A256450(col-1), and for row > 1, A(row,col) = A255411(A(row-1,col)); Dispersion of factorial base shift A255411 (array transposed).
1, 2, 4, 3, 12, 18, 5, 16, 72, 96, 6, 22, 90, 480, 600, 7, 48, 114, 576, 3600, 4320, 8, 52, 360, 696, 4200, 30240, 35280, 9, 60, 378, 2880, 4920, 34560, 282240, 322560, 10, 64, 432, 2976, 25200, 39600, 317520, 2903040, 3265920, 11, 66, 450, 3360, 25800, 241920, 357840, 3225600, 32659200, 36288000, 13, 70, 456, 3456, 28800, 246240, 2540160, 3588480, 35925120, 399168000, 439084800
Offset: 1
Comments
The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The first row (A256450) contains all the numbers which have at least one 1-digit in their factorial base representation (see A007623), after which the successive rows are obtained from the terms on the row immediately above by shifting their factorial representation one left and then incrementing the nonzero digits in that representation with a factorial base shift-operation A255411.
Examples
The top left corner of the array: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13 4, 12, 16, 22, 48, 52, 60, 64, 66, 70, 76 18, 72, 90, 114, 360, 378, 432, 450, 456, 474, 498 96, 480, 576, 696, 2880, 2976, 3360, 3456, 3480, 3576, 3696 600, 3600, 4200, 4920, 25200, 25800, 28800, 29400, 29520, 30120, 30840 4320, 30240, 34560, 39600, 241920, 246240, 272160, 276480, 277200, 281520, 286560 ...
Links
Crossrefs
Programs
Extensions
Formula changed because of the changed starting offset of A256450 - Antti Karttunen, May 30 2016
A095898 The (1,1)-term of the 3 X 3 matrix M^n, where M = [1,2,3 / 4,7,11 / 6,10,16].
1, 27, 649, 15603, 375121, 9018507, 216819289, 5212681443, 125321173921, 3012920855547, 72435421707049, 1741463041824723, 41867548425500401, 1006562625253834347, 24199370554517524729, 581791455933674427843, 13987194312962703792961, 336274454967038565458907
Offset: 1
Examples
a(4)=15603 because M^4 = [15603,26590,42193 / 56642,96527,153169 / 82078,139874,221952]. Alternatively, a(4) = 24*649+27 = 15603.
Links
- Colin Barker, Table of n, a(n) for n = 1..700
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (24,1).
Programs
-
Maple
a[1]:=1: a[2]:=27: for n from 3 to 18 do a[n]:=24*a[n-1]+a[n-2] od: seq(a[n],n=1..18);
-
PARI
Vec(x*(1 + 3*x) / (1 - 24*x - x^2) + O(x^30)) \\ Colin Barker, Mar 02 2017
Formula
a(n) = 24*a(n-1) + a(n-2) for n>=3; a(1)=1, a(2)=27 (follows from the minimal polynomial of the matrix M).
G.f.: (x+3*x^2) / (1-24*x-x^2). - Philippe Deléham, Nov 21 2008
a(n) = (-12 - sqrt(145))^(-n)*(87+7*sqrt(145) + (-289-24*sqrt(145))^n*(87-7*sqrt(145))) / 58. - Colin Barker, Mar 02 2017
Extensions
Corrected by T. D. Noe, Nov 07 2006
Edited by N. J. A. Sloane, Dec 16 2006
A372302 Numbers k for which the Zeckendorf representation A014417(k) ends with "1001".
6, 19, 27, 40, 53, 61, 74, 82, 95, 108, 116, 129, 142, 150, 163, 171, 184, 197, 205, 218, 226, 239, 252, 260, 273, 286, 294, 307, 315, 328, 341, 349, 362, 375, 383, 396, 404, 417, 430, 438, 451, 459, 472, 485, 493, 506, 519, 527, 540, 548, 561, 574, 582, 595, 603
Offset: 1
Keywords
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
Crossrefs
Tree of Zeckendorf subsequences of positive integers partitioned by their suffix part S (except initial term or offset in some cases). $ is the empty string. length(S) =
0 1 2 3 4 5 6 7
----------------------------------------------------------------------
$: 0: 00: 000: 0000: 00000: 000000:
100000: 0100000:
A035340 <------
10000:
1000: 01000:
A035338 <------
10: 010: 0010:
1010: 01010:
A134863 <------
100: 0100:
A035337 <------
1: 01: 001: 0001:
1001: 01001:
A372302 <------
101: 0101:
A134860 <------
A352583 a(n) is the value of the cell in the Wythoff array that lies in the next row and same column as the cell containing n.
4, 7, 11, 6, 18, 9, 10, 29, 12, 15, 16, 14, 47, 17, 20, 24, 19, 26, 22, 23, 76, 25, 28, 32, 27, 39, 30, 31, 42, 33, 36, 37, 35, 123, 38, 41, 45, 40, 52, 43, 44, 63, 46, 49, 50, 48, 68, 51, 54, 58, 53, 60, 56, 57, 199, 59, 62, 66, 61, 73, 64, 65, 84, 67, 70, 71, 69, 102, 72, 75
Offset: 1
Comments
From Kevin Ryde, Jun 05 2022: (Start)
a(n) is n with the "odd" part (A348853) of its Zeckendorf representation increased to the next greater "odd" number.
This increase is Zeckendorf digits +10 or +100 at the odd part, according to whether the final digits there are ..101 or ..001, respectively.
A354321(n) is the first of those three digits so that a(n) = n + Fibonacci(A035612(n) + 3 - A354321(n)).
(End)
Examples
The Wythoff array (A035513 or A083412) begins: 1 2 3 5 8 ... 4 7 11 18 29 ... 6 10 16 26 42 ... ... so a(1) = 4, a(2) = 7, a(3) = 11, a(4) = 6, ...
Crossrefs
Programs
-
PARI
T(n,k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513 cell(n) = for (r=1, oo, for (c=1, oo, if (T(r,c) == n, return([r, c])); if (T(r,c) > n, break););); \\ see A003603 and A035612 a(n) = {my(pos = cell(n)); T(pos[1]+1, pos[2]);}
-
PARI
{ my(phi=quadgen(5),s=phi-1,c=2*phi-3); a(n) = my(t=n,k=3,r); until(r
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Python
Python
Formula
Extensions