cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A075737 Prime Fibonacci numbers with prime indices.

Original entry on oeis.org

2, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917, 475420437734698220747368027166749382927701417016557193662268716376935476241
Offset: 1

Views

Author

Jani Melik, Oct 07 2002

Keywords

Comments

Same as A005478 except that F(4) = 3 has been omitted.
Sequence of primes in A001519. [James R. Buddenhagen, May 20 2010]

Examples

			5 is a prime and fibonacci(5)=5 is also a prime, 7 is a prime and fibonacci(7)=13 is also a prime, but 2 is a prime and fibonacci(2)=1 is not a prime.
		

Crossrefs

Subsequence of A030426.

Programs

  • Maple
    with(combinat, fibonacci): fib_supM_pra := proc(n); if (isprime(n)='true') then if (isprime(fibonacci(n))='true') then RETURN(fibonacci(n)); fi; fi; end: seq(fib_supM_pra(i), i=1..500);
  • Mathematica
    Fibonacci[ Prime[ Select[ Range[50], PrimeQ[ Fibonacci[ Prime[ # ]]] & ]]]
    Module[{nn=500,fibs},fibs=Fibonacci[Range[nn]];Select[Pick[fibs,Table[ If[ PrimeQ[n],1,0],{n,nn}],1],PrimeQ]] (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    forprime(p=2,1e3,if(isprime(t=fibonacci(p)), print1(t", "))) \\ Charles R Greathouse IV, Feb 03 2014

A119984 Numbers k such that Fibonacci(prime(k)) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 14, 15, 23, 32, 33, 72, 83, 84, 87, 97, 104, 105, 429, 637, 710, 1152, 1194, 1692, 2814, 3316, 3824, 3971, 5206, 8002, 10016, 12161, 13681, 18069, 33653, 36467, 48355, 48629, 49455, 73574, 82128, 99005, 123685, 135276, 146779, 210404, 233207, 239581
Offset: 1

Views

Author

Alexander Adamchuk, Aug 04 2006

Keywords

Comments

All prime Fibonacci numbers have prime indices, except prime F(4) = 3; a(n) is such that Fibonacci(prime(a(n))) is prime. - Robert G. Wilson v, Aug 05 2006

Crossrefs

Programs

  • Mathematica
    Select[ Range@3000, PrimeQ@ Fibonacci@ Prime@ # &] (* Robert G. Wilson v, Aug 05 2006 *)

Formula

a(n) = pi(A001605(n+1)). This holds for all n including n=1, since pi(4) = pi(3) = 2. - Jens Kruse Andersen, Jul 24 2014

Extensions

a(21)-a(27) from Robert G. Wilson v, Aug 05 2006
More terms (from A001605) from T. D. Noe, Aug 18 2006
a(42)-a(48) (from A001605, found by Henri Lifchitz) from Jens Kruse Andersen, Jul 24 2014
a(49)-a(50) (from A001605, found by Henri Lifchitz) from Amiram Eldar, Sep 01 2019

A038672 Primes p such that the p-th Fibonacci number is composite.

Original entry on oeis.org

19, 31, 37, 41, 53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 103, 107, 109, 113, 127, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A090819 (essentially identical), A083668, A135952.

Programs

  • Mathematica
    Rest[Select[Prime[Range[68]], ! PrimeQ[Fibonacci[#]] &]] (* Jayanta Basu, Jul 10 2013 *)
    s={A083668}; Complement[Prime[Range[2, 10034]], s] (* Hans Havermann, Feb 12 2014 *)

A122534 Numbers k such that Fibonacci(prime(prime(k))) is prime.

Original entry on oeis.org

1, 2, 3, 4, 9, 23, 25, 1456, 1616, 3865
Offset: 1

Views

Author

Alexander Adamchuk, Sep 18 2006

Keywords

Comments

The corresponding primes are {2,5,89,1597,99194853094755497,...}.
Numbers k such that A093308(k) is prime.
A277575(n) = prime(a(n)) is a prime in A119984.

Crossrefs

Formula

a(n) = PrimePi(A277575(n)) = PrimePi(PrimePi(A277284(n))). - Bobby Jacobs, Oct 26 2016

A286467 Compound filter (prime signature of n & prime signature of the n-th Fibonacci number): a(n) = P(A101296(n), A286545(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 5, 9, 5, 19, 5, 33, 18, 25, 5, 51, 5, 25, 40, 73, 5, 72, 12, 84, 40, 25, 5, 128, 69, 25, 71, 84, 5, 180, 12, 146, 40, 25, 40, 242, 23, 40, 40, 198, 12, 180, 5, 177, 177, 40, 5, 337, 31, 216, 40, 84, 12, 284, 59, 308, 140, 40, 12, 478, 12, 40, 177, 339, 40, 180, 23, 177, 140, 387, 12, 610, 12, 59, 216, 177, 59, 309, 12, 540, 332, 40, 5, 608, 59, 40, 59
Offset: 1

Views

Author

Antti Karttunen, May 17 2017

Keywords

Comments

Nonsquare semiprimes pq for which F(pq) is also a semiprime is given by the positions where 25's occur in this sequence: 10, 14, 22, 26, 34, 94, (any more terms?). This is a subsequence of A072381.

Crossrefs

Cf. A083668 (positions of 5's).

Programs

Formula

a(n) = (1/2)*(2 + ((A101296(n) + A286545(n))^2) - A101296(n) - 3*A286545(n)).

A277284 Prime-indexed primes p such that Fibonacci(p) is prime.

Original entry on oeis.org

3, 5, 11, 17, 83, 431, 509, 130021, 148091, 433781
Offset: 1

Views

Author

Bobby Jacobs, Oct 21 2016

Keywords

Comments

Intersection of A006450 and A083668. - Michel Marcus, Oct 21 2016

Examples

			17 = A000040(7), with 7 itself being a prime, and A000045(17) = 1597, a prime, thus 17 is included in this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Prime[Range[37000]]],PrimeQ[Fibonacci[#]]&] (* Harvey P. Dale, Sep 12 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(primepi(p)) && isprime(fibonacci(p)); \\ Michel Marcus, Oct 21 2016

Formula

a(n) = prime(A277575(n)).
a(n) = prime(prime(A122534(n))).

A277575 Primes p such that Fibonacci(prime(p)) is prime.

Original entry on oeis.org

2, 3, 5, 7, 23, 83, 97, 12161, 13681, 36467
Offset: 1

Views

Author

Bobby Jacobs, Oct 20 2016

Keywords

Comments

Suggested by Alexander Adamchuk in A122534.

Crossrefs

Programs

  • PARI
    isok(p) = isprime(p) && isprime(fibonacci(prime(p))); \\ Michel Marcus, Oct 22 2016

Formula

a(n) = prime(A122534(n)).
a(n) = PrimePi(A277284(n)).

A117517 Numbers k such that F(2*k + 1) is prime where F(m) is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 14, 21, 23, 41, 65, 68, 179, 215, 216, 224, 254, 284, 285, 1485, 2361, 2693, 4655, 4838, 7215, 12780, 15378, 17999, 18755, 25416, 40919, 52455, 65010, 74045, 100553, 198689, 216890, 295020, 296844, 302355, 465758, 524948, 642803, 818003, 901529, 984360, 1452176
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 26 2006

Keywords

Comments

For F(k) to be prime, with k > 4, it is necessary but not sufficient for k to be prime. Hence after F(4) = 3, every prime F(m) is of the form F(2*k+1) for some k. Every prime divides some Fibonacci number. See also comment to A093062. - Jonathan Vos Post, Apr 29 2006

Examples

			If k=68 then F(2*k + 1) = 19134702400093278081449423917, a prime, so 68 is a term.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(Fibonacci(2*n+1))]; // Vincenzo Librandi, May 24 2016
  • Mathematica
    Select[Range[0, 5000], PrimeQ[Fibonacci[2 # + 1]] &] (* Vincenzo Librandi, May 24 2016 *)

Formula

a(n) = (A083668(n)-1)/2. - R. J. Mathar, Jul 08 2009
a(n) = (A001605(n+1)-1)/2, n > 1. - Vincenzo Librandi, May 24 2016

Extensions

More terms from Vincenzo Librandi, May 24 2016
Showing 1-8 of 8 results.