cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084772 Coefficients of 1/sqrt(1 - 12*x + 16*x^2); also, a(n) is the central coefficient of (1 + 6*x + 5*x^2)^n.

Original entry on oeis.org

1, 6, 46, 396, 3606, 33876, 324556, 3151896, 30915046, 305543556, 3038019876, 30354866856, 304523343996, 3065412858696, 30946859111256, 313206733667376, 3176825392214406, 32284147284682596, 328643023505612596
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Diagonal of rational functions 1/(1 - x - y - 4*x*y), 1/(1 - x - y*z - 4*x*y*z). - Gheorghe Coserea, Jul 06 2018

Examples

			G.f.: 1/sqrt(1 - 2*b*x + (b^2-4*c)*x^2) yields central coefficients of (1 + b*x + c*x^2)^n.
		

Crossrefs

Cf. A001850.

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*5^k)); # Muniru A Asiru, Jul 29 2018
    
  • Magma
    [4^n*Evaluate(LegendrePolynomial(n), 3/2) : n in [0..40]]; // G. C. Greubel, May 31 2023
    
  • Mathematica
    Table[n! SeriesCoefficient[E^(6 x) BesselI[0, 2 Sqrt[5] x], {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, May 10 2013 *)
    CoefficientList[Series[1/Sqrt[1-12x+16x^2],{x,0,30}],x] (* Harvey P. Dale, Apr 17 2015 *)
    Table[4^n*LegendreP[n,3/2], {n,0,40}] (* G. C. Greubel, May 31 2023 *)
    a[n_] := 4^n*HypergeometricPFQ[{-n, n + 1}, {1}, -1/4]; Flatten[Table[a[n], {n,0,18}]] (* Detlef Meya, May 22 2024 *)
  • PARI
    for(n=0,30,t=polcoeff((1+6*x+5*x^2)^n,n,x); print1(t","))
    
  • SageMath
    [4^n*gen_legendre_P(n, 0, 3/2) for n in range(41)] # G. C. Greubel, May 31 2023

Formula

a(n) = Sum_{k=0..n} 5^k*C(n,k)^2. - Benoit Cloitre, Oct 26 2003
E.g.f.: exp(6*x)*BesselI(0, 2*sqrt(5)*x). - Paul Barry, Sep 20 2004
Asymptotic: a(n) ~ (1+sqrt(5))^(2*n+1)/(2*5^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 11 2012
D-finite with recurrence: n*a(n) = 6*(2*n-1)*a(n-1) - 16*(n-1)*a(n-2). - R. J. Mathar, Nov 09 2012
a(n) = 4^n * LegendreP(n, 3/2). - G. C. Greubel, May 31 2023
a(n) = 4^n*hypergeom([-n, n + 1], [1], -1/4). - Detlef Meya, May 22 2024