cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A084964 Follow n+2 by n. Also solution of a(n+2)=a(n)+1, a(0)=2, a(1)=0.

Original entry on oeis.org

2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 10, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 20, 18, 21, 19, 22, 20, 23, 21, 24, 22, 25, 23, 26, 24, 27, 25, 28, 26, 29, 27, 30, 28, 31, 29, 32, 30, 33, 31, 34, 32, 35, 33, 36, 34, 37, 35, 38, 36, 39
Offset: 0

Views

Author

Michael Somos, Jun 15 2003

Keywords

Crossrefs

Cf. A217764(1,n) = a(n+2).

Programs

  • Haskell
    import Data.List (transpose)
    a084964 n = a084964_list !! n
    a084964_list = concat $ transpose [[2..], [0..]]
    -- Reinhard Zumkeller, Apr 06 2015
  • Magma
    &cat[ [n+2, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    A084964:=n->floor(n/2)+1+(-1)^n; seq(A084964(k), k=0..100); # Wesley Ivan Hurt, Nov 08 2013
  • Mathematica
    lst={}; a=1; Do[a=n-a; AppendTo[lst, a], {n, 0, 100}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2008 *)
    Table[{n,n-2},{n,2,40}]//Flatten (* or *) LinearRecurrence[{1,1,-1},{2,0,3},80] (* Harvey P. Dale, Sep 12 2021 *)
  • PARI
    a(n)=n\2-2*(n%2)+2
    

Formula

G.f.: (2-2x+x^2)/((1-x)(1-x^2)).
a(2n+1)=n. a(2n)=n+2. a(n+2)=a(n)+1. a(n)=-a(-3-n).
a(n) = floor(n/2) + 1 + (-1)^n. - Reinhard Zumkeller, Aug 27 2005
A112032(n)=2^a(n); A112033(n)=3*2^a(n); a(n)=A109613(n+2)-A052938(n). - Reinhard Zumkeller, Aug 27 2005
a(n) = n + 1 - a(n-1) (with a(0)=2). - Vincenzo Librandi, Aug 08 2010
a(n) = floor(n/2)*3 - floor((n-1)/2)*2. - Ross La Haye, Mar 27 2013
a(n) = 3*n - 3 - 5*floor((n-1)/2). - Wesley Ivan Hurt, Nov 08 2013
a(n) = (3 + 5*(-1)^n + 2*n)/4. - Wolfgang Hintze, Dec 13 2014
E.g.f.: ((4 + x)*cosh(x) - (1 - x)*sinh(x))/2. - Stefano Spezia, Jul 01 2023

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009