cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A108296 Diagonal sums of the number triangle associated to A086617.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 43, 78, 144, 269, 509, 971, 1868, 3618, 7049, 13805, 27162, 53661, 106405, 211697, 422458, 845386, 1696017, 3410522, 6873060, 13878721, 28077439, 56900936, 115501012, 234807488, 478032437, 974507543, 1989123814
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

The triangle associated to A086617 is given by T(n,k)=if(k<=n, sum{j=0..n-k, C(n-k,j)C(k,j)C(j)},0). A050253(n)=A108296(n+2)-A108296(n).

Formula

G.f.: (1-x^2-sqrt(1-2*x^2-4*x^3-3*x^4))/(2*x^3*(1-x^2)).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2*k} binomial(n-2*k, j)*binomial(k, j) * A000108(j).
Conjecture: (n+3)*a(n) +(-n-2)*a(n-1) +2*(-n-1)*a(n-2) +2*(-n+3)*a(n-3) +(n+1)*a(n-4) +3*(n-2)*a(n-5)=0. - R. J. Mathar, Nov 16 2012

A086615 Antidiagonal sums of triangle A086614.

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912, 1344379, 3701158, 10237540, 28436824, 79288843, 221836402, 622599625, 1752360040, 4945087837, 13988490338, 39658308814, 112666081616
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Partial sums of the Motzkin sequence (A001006). - Emeric Deutsch, Jul 12 2004
a(n) is the number of distinct ordered trees obtained by branch-reducing the ordered trees on n+1 edges. - David Callan, Oct 24 2004
a(n) is the number of consecutive horizontal steps at height 0 of all Motzkin paths from (0,0) to (n,0) starting with a horizontal step. - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007
This sequence (with offset 1 instead of 0) occurs in Section 7 of K. Grygiel, P. Lescanne (2015), see g.f. N. - N. J. A. Sloane, Nov 09 2015
Also number of plain (untyped) normal forms of lambda-terms (terms that cannot be further beta-reduced.) [Bendkowski et al., 2016]. - N. J. A. Sloane, Nov 22 2017
If interpreted with offset 2, the INVERT transform is A002026 with offset 1. - R. J. Mathar, Nov 02 2021

Examples

			a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614:
{1},
{2,1},
{3,4,2},
{4,10,12,5},
{5,20,42,40,14},
{6,35,112,180,140,42}, ...
For example, with n=2, the 5 ordered trees (A000108) on 3 edges are
|...|..../\.../\.../|\..
|../.\..|......|........
|.......................
Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields
|...|..../\.../\../|\..
.../.\.................
of which 4 are distinct. So a(2)=4.
a(4)=8 because we have HHHH, HHUD, HUDH, HUHD
		

Crossrefs

Cf. A086614 (triangle), A086616 (row sums), A348869 (Seq. Transf.).
Cf. A001006.
Cf. A136788.

Programs

  • Maple
    A086615 := proc(n)
        option remember;
        if n <= 3 then
            2^n;
        else
            3*(-n-1)*procname(n-1) +(-n+4)*procname(n-2) +3*(n-1)*procname(n-3) ;
            -%/(n+2) ;
        end if;
    end proc:
    seq(A086615(n),n=0..20) ; # R. J. Mathar, Nov 02 2021
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

G.f.: A(x) = 1/(1-x)^2 + x^2*A(x)^2.
a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+1, 2k+1)*binomial(2k, k)/(k+1). - Paul Barry, Nov 29 2004
a(n) = n + 1 + Sum_k a(k-1)*a(n-k-1), starting from a(n)=0 for n negative. - Henry Bottomley, Feb 22 2005
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(j)*C(n-k, 2j). - Paul Barry, Aug 19 2005
From Paul Barry, May 31 2006: (Start)
G.f.: c(x^2/(1-x)^2)/(1-x)^2, c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} C(n+1,n-2k)*C(k). (End)
Binomial transform of doubled Catalan sequence 1,1,1,1,2,2,5,5,14,14,... - Paul Barry, Nov 17 2005
Row sums of Pascal-Catalan triangle A086617. - Paul Barry, Nov 17 2005
g(z) = (1-z-sqrt(1-2z-3z^2))/(2z-2z^2)/z - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007, corrected by Vaclav Kotesovec, Feb 13 2014
D-finite with recurrence (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +3*(n-1)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3^(n+5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

Edited by N. J. A. Sloane, Oct 16 2006

A086618 a(n) = Sum{k=0..n} binomial(n,k)^2*C(k), where C() = A000108() are the Catalan numbers.

Original entry on oeis.org

1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 2535078, 18758265, 141254655, 1079364105, 8350678170, 65298467487, 515349097713, 4100346740511, 32858696386766, 265001681344569
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Comments

Main diagonal of square table A086617 of coefficients, T(n,k), of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/[(1-x)(1-y)] + xy*f(x,y)^2.
a(n) is the number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 4. - Eric S. Egge, Oct 21 2008
In 2012, Zhi-Wei Sun proved that for any odd prime p we have the congruence a(1) + ... + a(p-1) == 0 (mod p^2). - Zhi-Wei Sun, Aug 22 2013

Examples

			a(5) = 1118 = 1*1^2 + 1*5^2 + 2*10^2 + 5*10^2 + 14*5^2 + 42*1^2.
		

Crossrefs

Cf. A086617 (table), A086615 (antidiagonal sums), A003046 (determinants).
Cf. A000108.
Cf. A228456.

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{(n+3)^2*(4*n+7)*a[n+2]==2*(20*n^3+117*n^2+220*n+135)*a[n+1]-9*(n+1)^2*(4*n+11)*a[n],a[1]==2,a[2]==7},a,{n,1,20}]}] (* Vaclav Kotesovec, Sep 11 2012 *)
    Table[HypergeometricPFQ[{1/2, -n, -n}, {1, 2}, 4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
  • PARI
    a(n)=sum(k=0,n-1,binomial(n-1,k)^2*binomial(2*k,k)/(k+1)) \\ Charles R Greathouse IV, Sep 12 2012
    
  • PARI
    a(n)=sum(k=0,n-1,(4*k+3)*sum(i=0,k,binomial(k,i)^2*binomial(2*i,i)))/3/n^2 \\ Charles R Greathouse IV, Sep 12 2012

Formula

Recurrence: (n+3)^2*(4*n+7)*a(n+2) = 2*(20*n^3+117*n^2+220*n+135)*a(n+1) - 9*(n+1)^2*(4*n+11)*a(n). - Vaclav Kotesovec, Sep 11 2012
a(n) ~ 3^(5/2)/(8*Pi) * 9^n/n^2. - Vaclav Kotesovec, Oct 06 2012
G.f.: (1-(1-9*x)^(1/3)*hypergeom([1/3,1/3],[1],-27*x*(1-x)^2/(1-9*x)^2))/(6*x). - Mark van Hoeij, May 02 2013
a(n) = hypergeom([1/2,-n,-n], [1,2], 4). - Vladimir Reshetnikov, Oct 03 2016
D-finite with recurrence (n+1)^2*a(n) +(-19*n^2+8*n+6)*a(n-1) +9*(11*n^2-30*n+21)*a(n-2) -81*(n-2)^2*a(n-3)=0. - R. J. Mathar, Aug 01 2022

Extensions

Edited by N. J. A. Sloane, Sep 14 2012. The formula in the new definition was first sent in by Michael Somos, Feb 19 2004
Minor edits Vaclav Kotesovec, Mar 31 2014

A087457 Number of odd length roads between any adjacent nodes in virtual optimal chordal ring of degree 3 (the length of chord < number of nodes/2).

Original entry on oeis.org

1, 5, 31, 213, 1551, 11723, 90945, 719253, 5773279, 46889355, 384487665, 3177879675, 26442188865, 221278343445, 1860908156031, 15717475208853, 133256583398655, 1133591857814363, 9672323357640129, 82752014457666363, 709719620585186529, 6100394753270329605
Offset: 1

Views

Author

B. Dubalski (dubalski(AT)atr.bydgoszcz.pl), Oct 23 2003

Keywords

Examples

			a(1)=1; a(2)=9*a(1)-2*2=9-4=5; a(3)=9*5-2*7=31; a(4)=9*31-2*33=213; etc
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, see page number?

Crossrefs

Programs

  • Maple
    a := 1; s := 0; for k from 1 to 10 do for i from 0 to k do ss := ((2*(i))!/((i)!*(i+1)!))*((k)!/((i)!*(k-i)!))^2; s := s+ss; od; a := (9*a-2*s); s := 0; od;
    # Alternative:
    a := n -> hypergeom([1/2, -n, -n], [1, 1], 4)/3;
    seq(simplify(a(n)), n = 1..22);  # Peter Luschny, Nov 06 2023
  • Mathematica
    Table[Sum[Binomial[n,k]^2*Binomial[2k,k],{k,0,n}]/3,{n,1,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*binomial(2*k,k))/3; \\ Michel Marcus, May 10 2020

Formula

a(1) = 1; a(n) = 9*a(n-1) - 2*A086618(n), where A086618(n) = Sum_{k=0..n} Catalan(n)*binomial(n, k)^2, and Catalan(n) = (2*n)!/(n!*(n+1)!). - Michael Somos
a(n) = A002893(n)/3 = (1/3)*Sum_{k=0..n}binomial(n,k)^2*binomial(2k,k). - Philippe Deléham, Sep 14 2008
Recurrence: n^2*a(n) = (10*n^2-10*n+3)*a(n-1) - 9*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ 3^(2*n+1/2)/(4*Pi*n). - Vaclav Kotesovec, Oct 14 2012
G.f.: (hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)/(1-9*x)^(2/3)-1)/3. - Mark van Hoeij, May 14 2013
G.f.: G(0)/(6*x*(1-9*x)^(2/3) ) -1/(3*x), where G(k)= 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4) / 3. - Peter Luschny, Nov 06 2023

A088925 Square table, read by antidiagonals, of coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 212, 120, 21, 1, 1, 28, 231, 644, 644, 231, 28, 1, 1, 36, 406, 1652, 2617, 1652, 406, 36, 1, 1, 45, 666, 3738, 8685, 8685, 3738, 666, 45, 1, 1, 55, 1035, 7680, 24735, 36345, 24735, 7680
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2003

Keywords

Comments

The g.f. for A001764 satisfies: g(x) = 1 + x*g(x)^3.

Examples

			Rows begin:
{1, 1, 1, 1, 1, 1, 1, 1,..}
{1, 3, 6,10,15,21,28,..}
{1, 6,21,55,120,231,..}
{1,10,55,212,644,..}
{1,15,120,644,..}
{1,21,231,..}
		

Crossrefs

Cf. A088926 (diagonal), A088927 (antidiagonal sums), A086617, A001764.

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n+k, 2*i]*Binomial[n+k-2*i, k-i]*(3*i)!/(i!*(2*i+1)!), {i, 0, k}]; Table[t[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 18 2013, after Michael Somos *)

Formula

T(n, k) = sum(i=0, k, C(n+k, 2i)*C(n+k-2i, k-i)*A001764(i) ), where A001764(i)=(3i)!/(i!(2i+1)!). - from Michael Somos

A089447 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
Offset: 0

Views

Author

Paul D. Hanna, Nov 02 2003

Keywords

Comments

Explicitly, g(x,y) = ((1-x-y)+sqrt((1-x-y)^2-4xy))/(2xy) = sum(n>=0, sum(k>=0, N(n,k)*x^n*y^k), where N(n,k) are the Narayana numbers: N(n,k) = C(n+k,k)*C(n+k+2,k+1)/(n+k+2). This array is directly related to sequence A002293, which has a g.f. h(x) that satisfies h(x) = 1 + x*h(x)^4. The inverse binomial transform of the rows grows by three terms per row.

Examples

			Rows begin:
[1,   1,     1,      1,       1,        1,         1,          1, ...];
[1,   4,    10,     20,      35,       56,        84,        120, ...];
[1,  10,    48,    162,     441,     1036,      2184,       4236, ...];
[1,  20,   162,    841,    3314,    10786,     30460,      77044, ...];
[1,  35,   441,   3314,   18004,    77952,    284880,     912042, ...];
[1,  56,  1036,  10786,   77952,   435654,   2007456,    7951674, ...];
[1,  84,  2184,  30460,  284880,  2007456,  11427992,   55009548, ...];
[1, 120,  4236,  77044,  912042,  7951674,  55009548,  317112363, ...];
[1, 165,  7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
		

Crossrefs

Cf. A089448 (diagonal), A089449 (antidiagonal sums), A086617, A088925, A002293.

Programs

  • PARI
    {L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}

A086614 Triangle read by rows, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x)^2 + xy*f(x,y)^2.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 10, 12, 5, 5, 20, 42, 40, 14, 6, 35, 112, 180, 140, 42, 7, 56, 252, 600, 770, 504, 132, 8, 84, 504, 1650, 3080, 3276, 1848, 429, 9, 120, 924, 3960, 10010, 15288, 13860, 6864, 1430, 10, 165, 1584, 8580, 28028, 57330, 73920, 58344, 25740
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Examples

			Rows:
{1},
{2, 1},
{3, 4,    2},
{4, 10,  12,    5},
{5, 20,  42,   40,   14},
{6, 35, 112,  180,  140,   42},
{7, 56, 252,  600,  770,  504,  132},
{8, 84, 504, 1650, 3080, 3276, 1848, 429}, ...
		

Crossrefs

T(n,n) = A000108(n).
Cf. A086615 (antidiagonal sums), A086616 (row sums), A086617, A000292 (column 1), A277935 (column 2), A000580 (column 3 divided by 5), A000582 (column 4 divided by 14).

Programs

  • Maple
    T := (n,k) -> `if`(k=0, n+1, binomial(2*k, k-1)*binomial(n+k+1, n-k)/k):
    for n from 0 to 8 do seq(T(n,k), k=0..n) od; # Peter Luschny, Jan 26 2018

Formula

T(n,k) = binomial(2*k, k-1)*binomial(n+k+1, n-k) / k for k > 0. # Peter Luschny, Jan 26 2018

A130671 Triangular sequence based on Pascal's triangle: t(n,m) = 2*binomial(m, n) - (1 + n*(m - n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 30, 21, 6, 1, 1, 7, 31, 57, 57, 31, 7, 1, 1, 8, 43, 96, 123, 96, 43, 8, 1, 1, 9, 57, 149, 231, 231, 149, 57, 9, 1, 1, 10, 73, 218, 395, 478, 395, 218, 73, 10, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 27 2007

Keywords

Comments

Suggested by Gary W. Adamson from a previous submission. Very close to (but slightly smaller at 7th row) A086617.

Examples

			{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 7, 4, 1},
{1, 5, 13, 13, 5, 1},
{1, 6, 21, 30, 21, 6, 1},
{1, 7, 31, 57, 57, 31, 7, 1}
		

Crossrefs

Cf. A086617.

Programs

  • Mathematica
    Table[Table[2*Binomial[m, n] - (1 + n*(m - n)), {n, 0, m}], {m, 0, 10}] Flatten[%]

Formula

t(n,m) = 2*binomial[m, n] - (1 + n*(m - n)).
Showing 1-8 of 8 results.