A108296
Diagonal sums of the number triangle associated to A086617.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 14, 24, 43, 78, 144, 269, 509, 971, 1868, 3618, 7049, 13805, 27162, 53661, 106405, 211697, 422458, 845386, 1696017, 3410522, 6873060, 13878721, 28077439, 56900936, 115501012, 234807488, 478032437, 974507543, 1989123814
Offset: 0
A086615
Antidiagonal sums of triangle A086614.
Original entry on oeis.org
1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912, 1344379, 3701158, 10237540, 28436824, 79288843, 221836402, 622599625, 1752360040, 4945087837, 13988490338, 39658308814, 112666081616
Offset: 0
a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614:
{1},
{2,1},
{3,4,2},
{4,10,12,5},
{5,20,42,40,14},
{6,35,112,180,140,42}, ...
For example, with n=2, the 5 ordered trees (A000108) on 3 edges are
|...|..../\.../\.../|\..
|../.\..|......|........
|.......................
Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields
|...|..../\.../\../|\..
.../.\.................
of which 4 are distinct. So a(2)=4.
a(4)=8 because we have HHHH, HHUD, HUDH, HUHD
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6
- Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682, 2016
- K. Grygiel and P. Lescanne, A natural counting of lambda terms, SOFSEM 2016. Preprint 2015
-
A086615 := proc(n)
option remember;
if n <= 3 then
2^n;
else
3*(-n-1)*procname(n-1) +(-n+4)*procname(n-2) +3*(n-1)*procname(n-3) ;
-%/(n+2) ;
end if;
end proc:
seq(A086615(n),n=0..20) ; # R. J. Mathar, Nov 02 2021
-
CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
A086618
a(n) = Sum{k=0..n} binomial(n,k)^2*C(k), where C() = A000108() are the Catalan numbers.
Original entry on oeis.org
1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 2535078, 18758265, 141254655, 1079364105, 8350678170, 65298467487, 515349097713, 4100346740511, 32858696386766, 265001681344569
Offset: 0
a(5) = 1118 = 1*1^2 + 1*5^2 + 2*10^2 + 5*10^2 + 14*5^2 + 42*1^2.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.
- T. Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767 [math.CO], 2013.
- Z.-W. Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011. See (1.22).
- Z.-W. Sun, On sums of Apery polynomials and related congruences, J. Number Theory 132(2012), 2673-2699.
-
Flatten[{1,RecurrenceTable[{(n+3)^2*(4*n+7)*a[n+2]==2*(20*n^3+117*n^2+220*n+135)*a[n+1]-9*(n+1)^2*(4*n+11)*a[n],a[1]==2,a[2]==7},a,{n,1,20}]}] (* Vaclav Kotesovec, Sep 11 2012 *)
Table[HypergeometricPFQ[{1/2, -n, -n}, {1, 2}, 4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
-
a(n)=sum(k=0,n-1,binomial(n-1,k)^2*binomial(2*k,k)/(k+1)) \\ Charles R Greathouse IV, Sep 12 2012
-
a(n)=sum(k=0,n-1,(4*k+3)*sum(i=0,k,binomial(k,i)^2*binomial(2*i,i)))/3/n^2 \\ Charles R Greathouse IV, Sep 12 2012
A087457
Number of odd length roads between any adjacent nodes in virtual optimal chordal ring of degree 3 (the length of chord < number of nodes/2).
Original entry on oeis.org
1, 5, 31, 213, 1551, 11723, 90945, 719253, 5773279, 46889355, 384487665, 3177879675, 26442188865, 221278343445, 1860908156031, 15717475208853, 133256583398655, 1133591857814363, 9672323357640129, 82752014457666363, 709719620585186529, 6100394753270329605
Offset: 1
B. Dubalski (dubalski(AT)atr.bydgoszcz.pl), Oct 23 2003
a(1)=1; a(2)=9*a(1)-2*2=9-4=5; a(3)=9*5-2*7=31; a(4)=9*31-2*33=213; etc
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, see page number?
-
a := 1; s := 0; for k from 1 to 10 do for i from 0 to k do ss := ((2*(i))!/((i)!*(i+1)!))*((k)!/((i)!*(k-i)!))^2; s := s+ss; od; a := (9*a-2*s); s := 0; od;
# Alternative:
a := n -> hypergeom([1/2, -n, -n], [1, 1], 4)/3;
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Nov 06 2023
-
Table[Sum[Binomial[n,k]^2*Binomial[2k,k],{k,0,n}]/3,{n,1,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
a(n) = sum(k=0, n, binomial(n,k)^2*binomial(2*k,k))/3; \\ Michel Marcus, May 10 2020
A088925
Square table, read by antidiagonals, of coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 212, 120, 21, 1, 1, 28, 231, 644, 644, 231, 28, 1, 1, 36, 406, 1652, 2617, 1652, 406, 36, 1, 1, 45, 666, 3738, 8685, 8685, 3738, 666, 45, 1, 1, 55, 1035, 7680, 24735, 36345, 24735, 7680
Offset: 0
Rows begin:
{1, 1, 1, 1, 1, 1, 1, 1,..}
{1, 3, 6,10,15,21,28,..}
{1, 6,21,55,120,231,..}
{1,10,55,212,644,..}
{1,15,120,644,..}
{1,21,231,..}
-
t[n_, k_] := Sum[ Binomial[n+k, 2*i]*Binomial[n+k-2*i, k-i]*(3*i)!/(i!*(2*i+1)!), {i, 0, k}]; Table[t[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 18 2013, after Michael Somos *)
A089447
Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies: f(x,y) = g(x,y) + xy*f(x,y)^4 and where g(x,y) satisfies: 1 + (x+y-1)*g(x,y) + xy*g(x,y)^2 = 0.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 48, 20, 1, 1, 35, 162, 162, 35, 1, 1, 56, 441, 841, 441, 56, 1, 1, 84, 1036, 3314, 3314, 1036, 84, 1, 1, 120, 2184, 10786, 18004, 10786, 2184, 120, 1, 1, 165, 4236, 30460, 77952, 77952, 30460, 4236, 165, 1, 1, 220, 7689, 77044
Offset: 0
Rows begin:
[1, 1, 1, 1, 1, 1, 1, 1, ...];
[1, 4, 10, 20, 35, 56, 84, 120, ...];
[1, 10, 48, 162, 441, 1036, 2184, 4236, ...];
[1, 20, 162, 841, 3314, 10786, 30460, 77044, ...];
[1, 35, 441, 3314, 18004, 77952, 284880, 912042, ...];
[1, 56, 1036, 10786, 77952, 435654, 2007456, 7951674, ...];
[1, 84, 2184, 30460, 284880, 2007456, 11427992, 55009548, ...];
[1, 120, 4236, 77044, 912042, 7951674, 55009548, 317112363, ...];
[1, 165, 7689, 178387, 2624453, 27870393, 231114465, 1576219474, ...]; ...
-
{L=10; T=matrix(L,L,n,k,1); for(n=1,L-1, for(k=1,L-1, T[n+1,k+1]=binomial(n+k,k)*binomial(n+k+2,k+1)/(n+k+2)+ sum(j3=1,k,sum(i3=1,n,T[n-i3+1,k-j3+1]* sum(j2=1,j3,sum(i2=1,i3,T[i3-i2+1,j3-j2+1]* sum(j1=1,j2,sum(i1=1,i2,T[i2-i1+1,j2-j1+1]*T[i1,j1])); )); )); )); T}
A086614
Triangle read by rows, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x)^2 + xy*f(x,y)^2.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 4, 10, 12, 5, 5, 20, 42, 40, 14, 6, 35, 112, 180, 140, 42, 7, 56, 252, 600, 770, 504, 132, 8, 84, 504, 1650, 3080, 3276, 1848, 429, 9, 120, 924, 3960, 10010, 15288, 13860, 6864, 1430, 10, 165, 1584, 8580, 28028, 57330, 73920, 58344, 25740
Offset: 0
Rows:
{1},
{2, 1},
{3, 4, 2},
{4, 10, 12, 5},
{5, 20, 42, 40, 14},
{6, 35, 112, 180, 140, 42},
{7, 56, 252, 600, 770, 504, 132},
{8, 84, 504, 1650, 3080, 3276, 1848, 429}, ...
-
T := (n,k) -> `if`(k=0, n+1, binomial(2*k, k-1)*binomial(n+k+1, n-k)/k):
for n from 0 to 8 do seq(T(n,k), k=0..n) od; # Peter Luschny, Jan 26 2018
A130671
Triangular sequence based on Pascal's triangle: t(n,m) = 2*binomial(m, n) - (1 + n*(m - n)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 30, 21, 6, 1, 1, 7, 31, 57, 57, 31, 7, 1, 1, 8, 43, 96, 123, 96, 43, 8, 1, 1, 9, 57, 149, 231, 231, 149, 57, 9, 1, 1, 10, 73, 218, 395, 478, 395, 218, 73, 10, 1
Offset: 1
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, 4, 7, 4, 1},
{1, 5, 13, 13, 5, 1},
{1, 6, 21, 30, 21, 6, 1},
{1, 7, 31, 57, 57, 31, 7, 1}
-
Table[Table[2*Binomial[m, n] - (1 + n*(m - n)), {n, 0, m}], {m, 0, 10}] Flatten[%]
Showing 1-8 of 8 results.
Comments