cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A036740 a(n) = (n!)^n.

Original entry on oeis.org

1, 1, 4, 216, 331776, 24883200000, 139314069504000000, 82606411253903523840000000, 6984964247141514123629140377600000000, 109110688415571316480344899355894085582848000000000, 395940866122425193243875570782668457763038822400000000000000000000
Offset: 0

Views

Author

Keywords

Comments

(-1)^n*a(n) is the determinant of the n X n matrix m_{i,j} = T(n+i,j), 1 <= i,j <= n, where T(n,k) are the signed Stirling numbers of the first kind (A008275). Derived from methods given in Krattenthaler link. - Benoit Cloitre, Sep 17 2005
a(n) is also the number of binary operations on an n-element set which are right (or left) cancellative. These are also called right (left) cancellative magma or groupoids. The multiplication table of a right (left) cancellative magma is an n X n matrix with entries from an n element set such that the elements in each column (or row) are distinct. - W. Edwin Clark, Apr 09 2009
This sequence is mentioned in "Experimentation in Mathematics" as a sum-of-powers determinant. - John M. Campbell, May 07 2011
Determinant of the n X n matrix M_n = [m_n(i,j)] with m_n(i,j) = Stirling2(n+i,j) for 1<=i,j<=n. - Alois P. Heinz, Jul 26 2013

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., 2004, p. 207.

Crossrefs

Main diagonal of A225816.

Programs

  • Maple
    a:= n-> n!^n:
    seq(a(n), n=0..12);  # Alois P. Heinz, Jul 25 2013
  • Mathematica
    Table[(n!)^n,{n,0,10}] (* Harvey P. Dale, Sep 29 2013 *)
  • Maxima
    makelist(n!^n,n,0,10); /* Martin Ettl, Jan 13 2013 */
  • PARI
    a(n)=n!^n;
    

Formula

a(n) = a(n-1)*n^n*(n-1)! = a(n-1)*A000169(n)*A000142(n) = A036740(n-1) * A000312(n)*A000142(n-1). - Henry Bottomley, Dec 06 2001
From Benoit Cloitre, Sep 17 2005: (Start)
a(n) = Product_{k=1..n} (k-1)!*k^k;
a(n) = A000178(n-1)*A002109(n) for n >= 1. (End)
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2-1/12). - Vaclav Kotesovec, Nov 14 2014
a(n) = Product_{k=1..n} k^n. - José de Jesús Camacho Medina, Jul 12 2016
Sum_{n>=0} 1/a(n) = A261114. - Amiram Eldar, Nov 16 2020

A105291 Triangle read by rows: T(m,n) = binomial(m!,n), m>=0, 0 <= n <= m!.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 6, 15, 20, 15, 6, 1, 1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1, 1, 120, 7140, 280840, 8214570, 190578024
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2010, following a suggestion from R. H. Hardin, Aug 31 2010

Keywords

Comments

This is the number of nXm arrays with each row a permutation of 1..m, and rows in lexicographically strictly increasing order.
For row 0, remember that 0!=1.

Examples

			Triangle begins:
[1, 1],
[1, 1],
[1, 2, 1],
[1, 6, 15, 20, 15, 6, 1],
[1, 24, 276, 2024, 10626, 42504, 134596, 346104, 735471, 1307504, 1961256, 2496144, 2704156, 2496144, 1961256, 1307504, 735471, 346104, 134596, 42504, 10626, 2024, 276, 24, 1],
...
		

Crossrefs

See A180397 for another version.
Cf. A007318 (Pascal's triangle), A086687, A109892.

Programs

  • Mathematica
    Flatten[Table[Binomial[m!,n],{m,0,5},{n,0,m!}]] (* Harvey P. Dale, Apr 16 2013 *)

A180397 T(n,m) = binomial(m!,n).

Original entry on oeis.org

1, 2, 0, 6, 1, 0, 24, 15, 0, 0, 120, 276, 20, 0, 0, 720, 7140, 2024, 15, 0, 0, 5040, 258840, 280840, 10626, 6, 0, 0, 40320, 12698280, 61949040, 8214570, 42504, 1, 0, 0, 362880, 812831040, 21324644880, 11104365420, 190578024, 134596, 0, 0, 0, 3628800
Offset: 1

Views

Author

R. H. Hardin, Sep 01 2010

Keywords

Comments

T(n,m) = number of n X m arrays with each row a permutation of 1..m and rows lexicographically in strictly increasing order.

Examples

			Table starts
1 2 6 24 120 720 5040 40320 362880 3628800
0 1 15 276 7140 258840 12698280 812831040 65840765760
0 0 20 2024 280840 61949040 21324644880 10923907290240
0 0 15 10626 8214570 11104365420 26853059065140
0 0 6 42504 190578024 1590145128144
0 0 1 134596 3652745460
0 0 0 346104
0 0 0
0 0
0
		

Crossrefs

See A105291 for another version.
First row gives A000142.
Main diagonal gives A086687.

Programs

  • Mathematica
    t[n_, m_] := Binomial[m!, n]; Table[t[m - n + 1, n], {m, 9}, {n, m, 1, -1}] // Flatten (* to display table in Comment *) Table[ t[m, n], {m, 10}, {n, 8}] // TableForm (* Robert G. Wilson v, Sep 02 2010 *)

Formula

T(n,m) = binomial(m!,n).

A067454 Binomial(a,b) where a = n! and b = sum of first n natural numbers.

Original entry on oeis.org

1, 1, 0, 1, 1961256, 4730523156632595024, 14714642085645788453359573419196194379200, 141671570521482692258866117076218807527442238234361038404229857860891009480
Offset: 0

Views

Author

Amarnath Murthy, Feb 05 2002

Keywords

Comments

Terms from Robert G. Wilson v.

Crossrefs

Programs

Formula

From Vaclav Kotesovec, May 29 2025: (Start)
a(n) ~ n!^(n*(n+1)/2) / (n*(n+1)/2)!.
a(n) ~ 2^(3*n^2/4 + 3*n/4) * Pi^(n^2/4 + n/4 - 1/2) * n^(n^3/2 - n^2/4 - 3*n/4 - 1) / exp(n^3/2 - n/24 + 5/24). (End)

A107447 a(n) = binomial(n!, n^2).

Original entry on oeis.org

1, 0, 0, 735471, 41749257038001257014137504, 8072776113194557737391130747136885454937928869204466648295480, 34145180671088019813488798475366394184193477615213303683031012996650190080826664983024305988320017979711374101114480000
Offset: 1

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A014062 C(n^2, n), A086687 C(n!, n), A067454.

Programs

  • Magma
    [Binomial(Factorial(n), n^2): n in [1..9]]; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    a[n_]:= Binomial[n!, n^2]; Array[a, 10]
  • SageMath
    [binomial(factorial(n), n^2) for n in range(1,10)] # G. C. Greubel, Mar 24 2024

Formula

From Vaclav Kotesovec, May 28 2025: (Start)
a(n) ~ n!^(n^2) / (n^2)!.
a(n) ~ (2*Pi)^((n^2 - 1)/2) * n^(n^3 - 3*n^2/2 - 1) / exp(n^3 -n^2 - n/12). (End)

A187083 a(n) = binomial(n^n, n).

Original entry on oeis.org

1, 6, 2925, 174792640, 2475588476563125, 14320984850603177651837856, 50975600425441237253196072020826978589, 155681826868802708662507744652859497547627180714885120, 541851389452483826218851027234763464912884507272826833630475746754951097
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n^n, n): n in [1..15]]; // Vincenzo Librandi, Apr 22 2011
  • Mathematica
    Table[Binomial[n^n,n],{n,12}]

Formula

a(n) ~ n^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A365628 a(n) = binomial(primorial(n), n).

Original entry on oeis.org

1, 2, 15, 4060, 78738660, 545754554499462, 1018081517447240182211275, 1793004475784081302284255717158418120, 1943305407393725342965469143054357602760779899437185, 3772316402417100592416011698371929155605067111502494326520988270728160
Offset: 0

Views

Author

Darío Clavijo, Sep 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = binomial(vecprod(primes(n)), n); \\ Michel Marcus, Sep 14 2023
  • Python
    from sympy import binomial, primorial
    a = lambda n: binomial(primorial(n), n)
    print([a(n) for n in range(1,10)])
    

Formula

a(n) = binomial(A002110(n), n).
Showing 1-7 of 7 results.