A035789 Start of a string of exactly 1 consecutive (but disjoint) pair of twin primes.
29, 41, 59, 71, 227, 239, 269, 281, 311, 347, 461, 521, 569, 599, 617, 641, 659, 857, 881, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1607, 1619, 1667, 1697, 1721, 1787, 1997, 2027, 2141, 2237, 2267, 2309, 2339, 2381, 2549, 2591, 2657, 2687
Offset: 1
Examples
The first lonely twin primes (A069453) are 29,31 (23 and 37 are non-twin), 41,43 (37 and 47 are non-twin), 59,61 (53 and 67 are non-twin). Of these, the lesser twins are 29,41,59, so this is how the sequence begins. 23, 27, 29, 31, 37, 41: 27-23>2, 31-29=2, 41-37>2; so 29 is in the sequence. From _Hartmut F. W. Hoft_, Apr 05 2016: (Start) The example should read: 19, 23, 29, 31, 37, 41: 23-19>2, 31-29=2, 41-37>2; so 29 is in the sequence. a(n)=A069453(2n-1), n>=1. (End)
Links
- Sebastian Petzelberger, Table of n, a(n) for n = 1..10000
- Hugo Pfoertner, FORTRAN program: Consecutive pairs of twin primes.
- Randall Rathbun, A study of n-twin_prime clusters among prime numbers, Posting to Number Theory List, Nov 19 1998.
Programs
-
Mathematica
PrimeNext[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k],k++ ];k]; PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k]; lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&!PrimeQ[p+4]&&PrimeQ[p+2]&&!PrimeQ[PrimePrev[p]-2]&&!PrimeQ[PrimeNext[p+2]+2],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 22 2009 *) (* starting at n=3 would eliminate the first two primality tests, Hartmut F. W. Hoft, Apr 09 2016 *)
Extensions
Edited by Hugo Pfoertner, Oct 15 2003
Comments