A088168 Smallest number m such that A088167(m)=n.
1, 3, 4, 39, 6, 15, 10, 12, 16, 22, 20, 18, 75, 38, 32, 24, 52, 44, 36, 297, 30, 575, 50, 40, 76, 399, 231, 48, 66, 615, 70, 98, 134, 88, 104, 441, 60, 80, 100, 84, 72, 108, 136, 1085, 90, 112, 96, 214, 152, 132, 585, 154, 156, 126, 174, 176, 196, 170, 186, 208
Offset: 1
Keywords
A124056 a(1)=1. a(n) = number of terms from among the first (n-1) terms of the sequence which divide a(n-1).
1, 1, 2, 3, 3, 4, 4, 5, 3, 5, 4, 6, 7, 3, 6, 9, 7, 4, 7, 5, 5, 6, 10, 8, 8, 9, 8, 10, 9, 9, 10, 10, 11, 3, 7, 6, 12, 17, 3, 8, 11, 4, 8, 13, 3, 9, 14, 8, 14, 9, 15, 14, 10, 12, 21, 14, 11, 5, 7, 7, 8, 15, 16, 16, 17, 4, 9, 16, 19, 3, 10, 14, 14, 15, 18, 23, 3, 11, 6, 17, 5, 8, 17, 6, 18, 27, 19
Offset: 1
Keywords
Comments
First occurrence of k: 1, 3, 4, 6, 8, 12, 13, 24, 16, 23, 33, 37, 44, 47, 51, 63, 38, 75, 69, 101, 55, 91, 76, 132, 102, ..., . - Robert G. Wilson v, Nov 05 2006
a(n+1) = number of preceding terms that are divisors of a(n); a(1) = 1. - Reinhard Zumkeller, May 23 2013
Examples
a(12) is 6. a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(9)=3 and a(12)=6 are the seven terms that divide 6. So a(13)= 7.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (isInfixOf) a124056 n = a124056_list !! (n-1) a124056_list = 1 : f [1] where f xs@(x:_) = y : f (y : xs) where y = length $ filter (flip elem $ a027750_row x) xs -- Reinhard Zumkeller, May 23 2013
-
Mathematica
f[s_] := Append[s, Count[Mod[s[[ -1]], s], 0]]; Nest[f, {1, 1}, 86] (* Robert G. Wilson v *) a[1]= 1; L[1]= {1}; a[n_]:=a[n]= Sum[If[Mod[a[n - 1], L[n - 1][[i]]]==0, 1, 0], {i,1,n-1}]; L[n_]:=L[n]= Table[a[i], {i, 1, n}]; L[87] (* Joel B. Lewis, Nov 05 2006 *)
Extensions
More terms from Robert G. Wilson v and Joel B. Lewis, Nov 05 2006
A269347 With a(1) = 1, a(n) is the sum of all 0 < m < n for which a(m) divides n.
1, 1, 3, 3, 3, 15, 3, 3, 30, 3, 3, 51, 3, 3, 84, 3, 3, 111, 3, 3, 150, 3, 3, 195, 3, 3, 246, 3, 3, 318, 3, 3, 366, 3, 3, 435, 3, 3, 510, 3, 3, 591, 3, 3, 684, 3, 3, 771, 3, 3, 882, 3, 3, 975, 3, 3, 1086, 3, 3, 1218, 3, 3, 1326, 3, 3, 1455
Offset: 1
Comments
For n > 2, I can prove that a(n) = 3 if 3 does not divide n, and in general, 3 divides a(n).
The base case is a(3) = 3. Suppose that the results hold for a(n) over 3 < n < k; we will show that the results hold for a(k) also. In the case that 3 does not divide k, then a(k) = 3, since a(1) and a(2) divide k but no other previous term can. This proves the first claim.
Otherwise, if 3 does divide k, then a(m) divides k for each 0 < m < k not divisible by 3; these numbers can be divided into k/3 pairs so that the sum of each pair is congruent to 0 modulo 3 (for instance, 1 + 2 == 4 + 5 == 7 + 8 == ... == 0 (mod 3)). If a(m) divides k for some 0 < m < k divisible by 3, this m does not change the congruence class of the sum that forms a(k). Thus, a(k) == 0 (mod 3) as required to prove the second claim.
Examples
a(1) = 1; a(2) = 1 because a(1) divides 2; a(3) = 3 because a(1) and a(2) divide 3: 1+2=3; a(4) = 3 because a(1) and a(2) divide 4: 1+2=3; a(5) = 3 because a(1) and a(2) divide 5: 1+2=3; a(6) = 15 because a(1), a(2), a(3), a(4), and a(5) divide 6: 1+2+3+4+5=15.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Alec Jones)
Crossrefs
Programs
-
Haskell
a269347 1 = 1 a269347 n = genericIndex a269347_list (n - 1) a269347_list = map a [1..] where a n = sum $ filter ((==) 0 . mod n . a269347) [1..n-1] -- Peter Kagey, Jun 17 2016
-
Java
int[] terms = new int[1000]; terms[0] = 1; for (int i = 1; i < 1000; i++) { int count = 0; for (int j = 0; j < i; j++) { if ((i + 1) % terms[j] == 0) { count = count + (j + 1); } } terms[i] = count; }
-
Mathematica
a = {1}; Do[AppendTo[a, Total@ Select[Range[n - 1], Divisible[n, a[[#]]] &]], {n, 2, 66}]; a (* Michael De Vlieger, Mar 24 2016 *)
-
PARI
lista(nn) = {va = vector(nn); va[1] = 1; for (n=2, nn, va[n] = sum(k=1, n-1, k*((n % va[k])==0));); va;} \\ Michel Marcus, Feb 24 2016
-
Python
from itertools import count, islice from sympy import divisors def A269347_gen(): # generator of terms A268347_dict = {1:1} yield 1 for n in count(2): yield (s:=sum(A268347_dict.get(d,0) for d in divisors(n,generator=True))) A268347_dict[s] = A268347_dict.get(s,0) + n A269347_list = list(islice(A269347_gen(),40)) # Chai Wah Wu, Nov 17 2022
-
Ruby
def a(n) seq = [1] (2..Float::INFINITY).each do |i| return seq.last[0...n].last if seq.length > n indices = seq.each_index.select { |j| i % seq[j] == 0 } seq << indices.map(&:next).reduce(:+) end end # Peter Kagey, Feb 25 2016
A351886 a(n) is the number of k < n such that a(k) AND n = 0 (where AND denotes the bitwise AND operator).
0, 1, 2, 1, 4, 2, 3, 1, 8, 4, 6, 3, 8, 3, 4, 1, 16, 9, 11, 6, 14, 5, 8, 4, 17, 9, 10, 5, 10, 3, 5, 1, 32, 16, 21, 10, 24, 12, 15, 7, 26, 11, 17, 7, 16, 6, 11, 4, 39, 19, 20, 10, 24, 10, 11, 4, 26, 12, 15, 7, 12, 3, 6, 1, 64, 34, 34, 20, 41, 21, 21, 10, 45, 21
Offset: 0
Comments
The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = 0 corresponds to an empty sum.
Examples
The first terms, alongside the corresponding k's, are: n a(n) k's -- ---- ------------------------- 0 0 {} 1 1 {0} 2 2 {0, 1} 3 1 {0} 4 4 {0, 1, 2, 3} 5 2 {0, 2} 6 3 {0, 1, 3} 7 1 {0} 8 8 {0, 1, 2, 3, 4, 5, 6, 7} 9 4 {0, 2, 4, 5} 10 6 {0, 1, 3, 4, 7, 9} 11 3 {0, 4, 9} 12 8 {0, 1, 2, 3, 5, 6, 7, 11}
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a:= proc(n) option remember; add( `if`(Bits[And](n, a(j))=0, 1, 0), j=0..n-1) end: seq(a(n), n=0..80); # Alois P. Heinz, Feb 28 2022
-
PARI
for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==0)", "))
-
Python
a = [] [a.append(sum(a[k] & n == 0 for k in range(n))) for n in range(74)] print(a) # Michael S. Branicky, Feb 24 2022
Formula
a(2^k) = 2^k.
A351887 a(n) is the number of k < n such that a(k) AND n = a(k) (where AND denotes the bitwise AND operator).
0, 1, 1, 3, 1, 4, 2, 7, 1, 5, 2, 8, 3, 8, 6, 15, 1, 6, 3, 11, 2, 8, 7, 18, 4, 9, 8, 19, 7, 14, 14, 31, 1, 7, 4, 13, 4, 12, 10, 24, 5, 12, 9, 21, 11, 22, 19, 40, 1, 8, 5, 17, 5, 18, 13, 35, 8, 19, 15, 34, 15, 32, 28, 63, 1, 9, 4, 15, 6, 18, 12, 31, 7, 18, 11
Offset: 0
Comments
The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = 0 corresponds to an empty sum.
Examples
The first terms, alongside the corresponding k's, are: n a(n) k's -- ---- ------------------------ 0 0 {} 1 1 {0} 2 1 {0} 3 3 {0, 1, 2} 4 1 {0} 5 4 {0, 1, 2, 4} 6 2 {0, 5} 7 7 {0, 1, 2, 3, 4, 5, 6} 8 1 {0} 9 5 {0, 1, 2, 4, 8} 10 2 {0, 6} 11 8 {0, 1, 2, 3, 4, 6, 8, 10} 12 3 {0, 5, 11}
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
Programs
-
Maple
a:= proc(n) option remember; add( `if`(Bits[And](n, a(j))=a(j), 1, 0), j=0..n-1) end: seq(a(n), n=0..80); # Alois P. Heinz, Feb 28 2022
-
PARI
for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==a[k])", "))
-
Python
a = [] [a.append(sum(a[k] & n == a[k] for k in range(n))) for n in range(75)] print(a) # Michael S. Branicky, Feb 24 2022
A271774 a(1) = 1, then a(n) is the maximum of all 0 < m < n for which a(m) divides n.
1, 1, 2, 3, 2, 5, 2, 7, 4, 7, 2, 11, 2, 13, 6, 13, 2, 17, 2, 19, 10, 19, 2, 23, 6, 23, 4, 27, 2, 29, 2, 31, 12, 31, 10, 33, 2, 37, 16, 37, 2, 41, 2, 43, 6, 43, 2, 47, 10, 49, 18, 47, 2, 53, 12, 53, 22, 53, 2, 59, 2, 61, 10, 61, 16, 61, 2, 67, 26, 67, 2, 71, 2
Offset: 1
Keywords
Comments
If n is an odd prime, then a(n) = 2 and a(n+1) = n. All n for which a(n) = 2 are odd primes. - Robert Israel, Apr 14 2016
Examples
a(1) = 1 by definition. a(2) = 1 because a(1) divides 2. a(3) = 2 because a(2) divides 3. a(4) = 3 because a(3) divides 4. a(5) = 2 because a(2) divides 5. a(6) = 5 because a(5) divides 6. a(7) = 2 because a(2) divides 7. a(8) = 7 because a(7) divides 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A:= proc(n) option remember; local m; for m from n-1 by -1 do if n mod A(m) = 0 then return m fi od end proc: A(1):= 1: seq(A(i),i=1..100); # Robert Israel, Apr 14 2016
-
Mathematica
a[1] = 1; a[n_] := a[n] = Block[{m = n - 1}, While[Mod[n, a[m]] > 0, m--]; m]; Array[a, 100] (* Giovanni Resta, Apr 14 2016 *)
A102128 a(1) = 1; a(n) = sum of previous terms which divide n.
1, 1, 2, 4, 2, 6, 2, 12, 2, 10, 2, 34, 2, 14, 2, 20, 2, 24, 2, 54, 2, 22, 2, 70, 2, 26, 2, 46, 2, 46, 2, 36, 2, 68, 2, 94, 2, 38, 2, 74, 2, 62, 2, 70, 2, 138, 2, 94, 2, 60, 2, 82, 2, 114, 2, 74, 2, 58, 2, 172, 2, 124, 2, 68, 2, 94, 2, 242, 2, 234, 2, 154, 2, 222, 2, 118, 2, 110, 2, 114, 2
Offset: 1
Keywords
Examples
Among the first 7 terms, the terms which divide 8 are 1, 1, 2, 4, 2 and 2. So a(8) = 1 + 1 + 2 + 4 + 2 + 2 = 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A088167.
Programs
-
Mathematica
Nest[Function[{a, n}, Append[a, Total@ Select[a, Mod[n, #] == 0 &]]] @@ {#, Length@ # + 1} &, {1}, 80] (* Michael De Vlieger, Nov 13 2018 *)
-
PARI
up_to = 20000; A102128list(up_to) = { my(v=vector(up_to)); v[1] = 1; for(n=2,up_to,v[n] = sum(j=1,n-1,v[j]*!(n%v[j]))); (v); }; v102128 = A102128list(up_to); A102128(n) = v102128[n]; \\ Antti Karttunen, Nov 10 2018
Formula
a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^a(k)/(1 - x^a(k)). - Ilya Gutkovskiy, Dec 11 2017
Extensions
More terms from John W. Layman, Mar 16 2005
A115751 a(1)=1. a(n) = number of positive divisors of n which are not among the first (n-1) terms of the sequence.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 4, 4, 2, 4, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 3, 2, 1, 6, 2, 2, 2, 5, 1, 7, 2, 3, 2, 2, 2, 7, 1, 3, 4, 5, 1, 4, 1, 5, 4
Offset: 1
Keywords
Comments
There are only 40 distinct values among the first 10000 terms. The records occur at positions: 1, 4, 12, 30, 48, 72, 120, 180, 240, 360, 480, 720, 840, 1260, 1680, 2160, 2520, 4620, 5040, ... - Antti Karttunen, Oct 21 2017
Examples
The divisors of 12 are 1, 2, 3, 4, 6 and 12. Of these, only the four divisors 3, 4, 6 and 12 do not occur among the first 11 terms of the sequence. So a(12) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10001
Crossrefs
Cf. A088167.
Programs
-
Maple
with(numtheory): a[1]:=1: for n from 2 to 120 do div:=divisors(n): M:=convert([seq(a[j],j=1..n-1)],set): a[n]:=nops(div minus M): od: seq(a[n],n=1..120); # Emeric Deutsch, Apr 01 2006
-
Scheme
;; We define a mutual recurrence with the memoization-macro definec: (definec (A115751 n) (if (= 1 n) n (length (remove (lambda (d) (zero? (modulo (Aauxseq_forA115751 (- n 1)) (A000040 d)))) (divisors n))))) ;; The other member of the mutual recurrence has not been submitted. Its n-th term keeps track in its prime factorization what distinct values has so far occurred in A115751(1) .. A115751(n). That is, iff value k has occurred in range a(1) .. a(n), then the n-th term of this auxiliary sequence is divisible by the k-th prime: (definec (Aauxseq_forA115751 n) (if (= 1 n) 2 (lcm (A000040 (A115751 n)) (Aauxseq_forA115751 (- n 1))))) (define (divisors n) (cons 1 (proper-divisors n))) (define (proper-divisors n) (let loop ((k n) (divs (list))) (cond ((= 1 k) divs) ((zero? (modulo n k)) (loop (- k 1) (cons k divs))) (else (loop (- k 1) divs))))) ;; Antti Karttunen, Oct 21 2017
Extensions
More terms from Emeric Deutsch, Apr 01 2006
A297003 a(n) = 2^(n-1), n=1,2,3; for n >= 4, a(n) is the number of the previous terms dividing n.
1, 2, 4, 3, 1, 4, 2, 6, 3, 4, 2, 11, 2, 6, 4, 10, 2, 11, 2, 13, 4, 10, 2, 18, 2, 11, 4, 16, 2, 17, 2, 19, 7, 13, 3, 24, 2, 14, 7, 21, 2, 23, 2, 24, 5, 16, 2, 31, 4, 19, 6, 25, 2, 24, 6, 27, 7, 17, 2, 35, 2, 20, 9, 28, 5, 29, 2, 29, 6, 29, 2, 41, 2, 22, 8, 31
Offset: 1
Examples
1-3) a(1)=1, a(2)=2 a(3)=4 by the definition; 4) Let n=4. From the previous terms {1,2,4} everyone divides 4, so a(4)=3; 5) Let n=5. From the previous terms {1,2,4,3} only 1 divides 5. So a(5)=1; 6) Let n=6. From the previous terms {1,2,4,3,1} exactly four divide 6. So a(6)=4; etc.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A088167.
Programs
-
Mathematica
first[n_] := Fold[Append[#1, Count[#1, k_ /; Divisible[#2, k]]] &, 2^Range[0, Min[n - 1, 2]], Range[4, n]] (* Michael De Vlieger, Dec 23 2017 *)
-
PARI
first(n) = my(res = vector(n), c = 0); for(x = 1, min(n, 3), res[x] = 1<<(x-1)); for(x=4, n, for(k=1, x-1, if(x%res[k]==0, c++)); res[x] = c; c = 0); res \\ Iain Fox, Dec 23 2017
-
Sage
def A297003_list(leng): L = [1, 2, 4] if leng < 4: return L[0:leng] for n in (4..leng) : count = 0 for l in L: count += int(l.divides(n)) L.append(count) return L print(A297003_list(76)) # Peter Luschny, Dec 24 2017
Formula
a(p) = 2, where p is prime, other than 3 and 5.
Extensions
More terms from Peter J. C. Moses, Dec 23 2017
Comments