A007691 Multiply-perfect numbers: n divides sigma(n).
1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1
Examples
120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.
Links
- T. D. Noe, Table of n, a(n) for n=1..1600 (using Flammenkamp's data)
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Anonymous, Multiply Perfect Numbers [broken link]
- Eric Bach, Gary Miller, and Jeffrey Shallit, Sums of divisors perfect numbers and factoring, SIAM J. Comput. 15:4 (1986), pp. 1143-1154.
- Robert D. Carmichael, A table of multiply perfect numbers, Bull. Amer. Math. Soc. 13 (1907), 383-386.
- Farideh Firoozbakht and Maximilian F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
- Achim Flammenkamp, The Multiply Perfect Numbers Page
- Luis H. Gallardo and Olivier Rahavandrainy, On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors, arXiv:1908.00106 [math.NT], 2019.
- Shyam Sunder Gupta, Perfect, Multiply Perfect, and Sociable Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 6, 185-207.
- Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373.
- Walter Nissen, Abundancy : Some Resources
- Kaitlin Rafferty and Judy Holdener, On the form of perfect and multiperfect numbers, Pi Mu Epsilon Journal, Vol. 13, No. 5 (Fall 2011), pp. 291-298.
- Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017. See p. 11.
- Eric Weisstein's World of Mathematics, Abundancy
- Eric Weisstein's World of Mathematics, Hyperperfect Number.
- Index entries for sequences where any odd perfect numbers must occur
Crossrefs
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Other subsequences: A046985, A046986, A046987, A047728, A065997, A066289, (A076231, A076233, A076234), A088844, A088845, A088846, A091443, A114887, A166069, A245782, A260508, A306667, (A325021 U A325022), (A325023 U A325024), (A325025 U A325026), A325637, A323653, A330532, (A330533 U A331724), A336702, A341045.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Programs
-
Haskell
a007691 n = a007691_list !! (n-1) a007691_list = filter ((== 1) . a017666) [1..] -- Reinhard Zumkeller, Apr 06 2012
-
Mathematica
Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *) Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]] (* Third program: *) Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
-
PARI
for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
-
Python
from sympy import divisor_sigma as sigma def ok(n): return sigma(n, 1)%n == 0 print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
Extensions
More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021
Comments