cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023204 Primes p such that 2*p + 3 is also prime.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 29, 43, 47, 53, 67, 73, 89, 97, 113, 127, 137, 139, 157, 167, 173, 193, 197, 199, 223, 227, 229, 269, 277, 283, 307, 337, 349, 353, 379, 383, 397, 409, 439, 463, 467, 487, 503, 509, 523, 547, 557, 563, 599, 607, 613, 617, 643, 647, 659, 739, 743, 773
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

A067076 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

A089531 Primes p such that (p-3)/2 is also prime.

Original entry on oeis.org

7, 13, 17, 29, 37, 41, 61, 89, 97, 109, 137, 149, 181, 197, 229, 257, 277, 281, 317, 337, 349, 389, 397, 401, 449, 457, 461, 541, 557, 569, 617, 677, 701, 709, 761, 769, 797, 821, 881, 929, 937, 977, 1009, 1021, 1049, 1097, 1117, 1129, 1201, 1217, 1229, 1237
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A023204(n) + 3.

Extensions

Comment from Juri-Stepan Gerasimov used as new name (old name moved to formulas). - Charles R Greathouse IV, Sep 09 2014

A089526 Numbers n such that 2*p(n)+3 and 2*p(n+1)+3 are consecutive primes, where p(i) denotes the i-th prime.

Original entry on oeis.org

3, 7, 14, 33, 44, 45, 48, 49, 70, 75, 90, 174, 186, 213, 225, 246, 253, 254, 447, 505, 524, 531, 589, 592, 625, 665, 745, 766, 806, 866, 868, 989, 1047, 1084, 1091, 1105, 1131, 1191, 1202, 1228, 1257, 1280, 1333, 1395, 1410, 1429, 1495, 1512, 1550, 1643, 1651
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Examples

			p(3)=5, 2*5+3=13=p(6)
p(4)=7, 2*7+3=17=p(7)
		

Crossrefs

Subsequence of A089530. Cf. A089527, A089528, A089529.

Programs

  • Mathematica
    cpQ[n_]:=Module[{p=2Prime[n]+3},PrimeQ[p]&&NextPrime[p]==2Prime[n+1]+3]; Select[Range[1700],cpQ] (* Harvey P. Dale, Nov 29 2014 *)

A089532 A089531 indexed by A000040.

Original entry on oeis.org

4, 6, 7, 10, 12, 13, 18, 24, 25, 29, 33, 35, 42, 45, 50, 55, 59, 60, 66, 68, 70, 77, 78, 79, 87, 88, 89, 100, 102, 104, 113, 123, 126, 127, 135, 136, 139, 142, 152, 158, 159, 165, 169, 172, 176, 184, 187, 189, 197, 199, 201, 203, 209, 211, 216, 234, 237, 244, 251
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Formula

a(n)=k such that A089531(n)=A000040(k).

A190478 a(n) is the smallest prime prime(k) > a(n-1) such that the n numbers 2*prime(j)+3, j=k to k+n-1, are all prime.

Original entry on oeis.org

2, 5, 13, 3767, 19913, 726109, 4827859, 59069473, 179993463679, 2280987436223
Offset: 1

Views

Author

Pierre CAMI, May 11 2011

Keywords

Comments

This essentially searches for blocks of n consecutive primes of the form A023204 (see also A089530) with a minimum of the primes in the block set by the previous entry in the sequence. - R. J. Mathar, Jun 02 2011
Any further terms are > 10^13. - Lucas A. Brown, Mar 17 2024

Examples

			For n=1, 2 is prime and 2*2+3=7 is prime so a(1)=2.
For n=2, 5,7 are consecutive primes 2*5+3 and 2*7+3 are primes so a(2)=5 as 5 is the least such prime > 2.
For n=3, 13,17,19 are consecutive primes 2*13+3, 2*17+3, 2*19+3 are primes so a(3)=13 as 13 is the least such prime > 5.
		

Crossrefs

Cf. A023204.

Programs

  • Maple
    isA023204 := proc(n) isprime(n) and isprime(2*n+3) ; end proc:
    A190478idx := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do krun := true; for k from a to a+n-1 do if not isA023204(ithprime(k)) then krun := false; break; end if; end do: if krun then return a; end if; end do: end if; end proc:
    A190478 := proc(n) ithprime( A190478idx(n)) ; end proc: # R. J. Mathar, Jun 02 2011
  • PARI
    old(p,k)=while(k--,p=precprime(p-1));p;
    n=1;k=0;forprime(p=2,4e9,if(isprime(p<<1+3),if(k++==n,print1(old(p,n)", ");k--;n++),k=0)) \\ Charles R Greathouse IV, May 11 2011

Extensions

a(8) from Charles R Greathouse IV, May 11 2011
a(9)-a(10) from Lucas A. Brown, Mar 17 2024
Showing 1-5 of 5 results.