cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A089530 A023204 indexed by A000040.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 34, 37, 39, 40, 44, 45, 46, 48, 49, 50, 57, 59, 61, 63, 68, 70, 71, 75, 76, 78, 80, 85, 90, 91, 93, 96, 97, 99, 101, 102, 103, 109, 111, 112, 113, 117, 118, 120, 131, 132, 137, 139, 140, 144, 147, 149, 154
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(2*NthPrime(n)+3)]; // Vincenzo Librandi, May 02 2016
  • Mathematica
    Select[Range[160], PrimeQ[2 Prime[#] + 3] &] (* Vincenzo Librandi, May 02 2016 *)

Formula

a(n)=k such that A023204(n)=A000040(k).

A005382 Primes p such that 2p-1 is also prime.

Original entry on oeis.org

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 661, 691, 727, 811, 829, 877, 937, 967, 997, 1009, 1069, 1171, 1237, 1279, 1297, 1399, 1429, 1459, 1531, 1609, 1627, 1657, 1759, 1867, 2011
Offset: 1

Views

Author

Keywords

Comments

Sequence gives values of p such Sum_{i=1..p} gcd(p,i) = A018804(p) is prime. - Benoit Cloitre, Jan 25 2002
Let q = 2n-1. For these n (and q), the sum of two cyclotomic polynomials can be written as a product of cyclotomic polynomials and as a cyclotomic polynomial in x^2: Phi(q,x) + Phi(2q,x) = 2 Phi(n,x) Phi(2n,x) = 2 Phi(n,x^2). - T. D. Noe, Nov 04 2003
Primes in A006254. - Zak Seidov, Mar 26 2013
If a(n) is in A168421 then A005383(n) is a twin prime with a Ramanujan prime, A005383(n) - 2. If this sequence has an infinite number of terms in A168421, then the twin prime conjecture can be proved. - John W. Nicholson, Dec 05 2013
Records subsequence of A023509 (n >= 2). - David James Sycamore, May 05 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010051, A000040, A053685 (subsequence), A006254.
Cf. A023509.

Programs

  • Haskell
    a005382 n = a005382_list !! (n-1)
    a005382_list = filter
       ((== 1) . a010051 . (subtract 1) . (* 2)) a000040_list
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    f := proc(Q) local t1,i,j; t1 := []; for i from 1 to 500 do j := ithprime(i); if isprime(2*j-Q) then t1 := [op(t1),j]; fi; od: t1; end; f(1);
    # second Maple program:
    q:= p-> andmap(isprime, [p, 2*p-1]):
    select(q, [$2..2500])[];  # Alois P. Heinz, Dec 16 2024
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[2#-1]&]
  • PARI
    select(p->isprime(2*p-1),primes(500)) \\ Charles R Greathouse IV, Apr 26 2012
    
  • PARI
    forprime(n=2, 10^3, if(ispseudoprime(2*n-1), print1(n, ", "))) \\ Felix Fröhlich, Jun 15 2014

Formula

a(n) = A129521(n) / A005383(n). - Reinhard Zumkeller, Apr 19 2007
a(n) = (A005383(n) + 1)/2. - Zak Seidov, Nov 04 2010

A092109 Primes p such that p+3 is a semiprime.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 59, 71, 79, 83, 103, 131, 139, 163, 191, 199, 211, 223, 251, 271, 311, 331, 359, 379, 383, 419, 443, 463, 479, 499, 523, 563, 619, 631, 659, 691, 743, 839, 859, 863, 883, 911, 919, 971, 1039, 1091, 1123, 1151, 1171, 1223, 1231, 1259
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Primes p such that p-3 is semiprime are in A089531; p and 2p+3 both prime, A023204; p, 2p-3 and 2p+3 prime, A092110.
Primes p such that (p+3)/2 is prime. All these primes are congruent to 3 mod 4. - Artur Jasinski, Oct 11 2008
Subsequence of A131426. - Zak Seidov, Mar 29 2015
Subsequence of A091305. - David Radcliffe, May 22 2022

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(1300)| IsSemiprime(p+3)]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    select(p -> isprime(p) and isprime((p+3)/2), [seq(2*k+1,k=1..1000)]); # Robert Israel, Mar 29 2015
  • Mathematica
    aa = {}; k = 3; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 100}]; aa (* Artur Jasinski, Oct 11 2008 *)
    Select[Prime[Range[300]],PrimeOmega[#+3]==2&] (* Harvey P. Dale, Feb 07 2018 *)
  • PARI
    is(n)=n%2 && isprime((n+3)/2) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = 2*A063908(n)-3 = 4*A115334(n)+3. - Artur Jasinski, Oct 11 2008

A089531 Primes p such that (p-3)/2 is also prime.

Original entry on oeis.org

7, 13, 17, 29, 37, 41, 61, 89, 97, 109, 137, 149, 181, 197, 229, 257, 277, 281, 317, 337, 349, 389, 397, 401, 449, 457, 461, 541, 557, 569, 617, 677, 701, 709, 761, 769, 797, 821, 881, 929, 937, 977, 1009, 1021, 1049, 1097, 1117, 1129, 1201, 1217, 1229, 1237
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Programs

Formula

a(n) = 2*A023204(n) + 3.

Extensions

Comment from Juri-Stepan Gerasimov used as new name (old name moved to formulas). - Charles R Greathouse IV, Sep 09 2014

A080192 Complement of A080191 relative to A000040. Prime p is a term iff there is no prime between 2*p and 2*q, where q is the next prime after p.

Original entry on oeis.org

59, 71, 101, 107, 149, 263, 311, 347, 461, 499, 521, 569, 673, 757, 821, 823, 857, 881, 883, 907, 967, 977, 1009, 1061, 1091, 1093, 1151, 1213, 1279, 1283, 1297, 1301, 1319, 1433, 1487, 1489, 1493, 1549, 1571, 1597, 1619, 1667, 1697, 1721, 1787, 1871, 1873
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

From Peter Munn, Oct 19 2017: (Start)
This is also a list of the leaf node labels in the tree of primes described in A290183.
For k > 0, the earliest run of k adjacent primes in this sequence starts with the least prime greater than A215238(k+1)/2. Thus we see that A215238(3) = 1637 corresponds to 821 followed by 823 being the first run of 2 adjacent primes in this sequence.
(End)
From Peter Munn, Nov 02 2017: (Start)
If p is in A005384 (a Sophie Germain prime), 2p+1 is therefore a prime, so p cannot be in this sequence. Similarly, any prime p in A023204 has a corresponding prime 2p+3, which (if p>2) likewise implies its absence (and if p=2 it is in A005384).
If p is the lesser of twin primes it is in this sequence if it is neither Sophie Germain nor in A023204.
Conjecture: a(n)/A000040(n) is asymptotic to 3. Reason: I expect the distribution of terms in A102820 to converge to a geometric distribution with mean value 2.
(End)

Examples

			59 is a term since 113 is the prime preceding 2*59, 127 is the next prime and 61 is the largest of all prime factors of 114, ..., 122 = 2*61, ..., 126.
		

Crossrefs

A080191 is the complement of this sequence relative to A000040.
Sequences with related analysis: A005384, A023204, A052248, A102820, A215238, A290183.
Sequences with similar definitions: A195270, A195271, A195325, A195377.

Programs

  • Mathematica
    Select[Prime[Range[300]],NextPrime[2#]>2NextPrime[#]&] (* Harvey P. Dale, Jul 07 2011 *)
  • NARS2000
    ¯1↓b/⍨(1⌽a)<1πa←2×b←¯2π⍳1E4 ⍝ Michael Turniansky, Dec 29 2020
  • PARI
    {forprime(k=2,1873,p=precprime(2*k); q=nextprime(p+1); m=0; for(j=p+1,q-1,f=factor(j); a=f[matsize(f)[1],1]; if(m
    				
  • PARI
    isok(p) = isprime(p) && (primepi(2*p) == primepi(2*nextprime(p+1)));
    forprime(p=2, 2000, if (isok(p), print1(p, ", "))) \\ Michel Marcus, Sep 22 2017
    
  • PARI
    first(n) = my(res = vector(n), i = 0); {n==0&&return([]); forprime(p = 2, , if(nextprime(2*p) > 2*nextprime(p + 1), i++; res[i] = p; if(i == n, return(res))))} \\ David A. Corneth, Oct 25 2017
    

Formula

For all k, prime(k) = A000040(k) is a term if and only if A102820(k) = 0. - Peter Munn, Oct 24 2017

A023205 Numbers m such that m and 2*m + 5 are both prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 61, 67, 73, 79, 97, 103, 109, 139, 151, 163, 181, 229, 241, 271, 283, 307, 313, 367, 373, 409, 439, 457, 523, 541, 613, 643, 661, 709, 727, 733, 739, 769, 787, 811, 829, 859, 877, 937, 991, 997, 1039, 1063, 1069, 1087, 1117, 1123, 1153, 1171
Offset: 1

Views

Author

David W. Wilson, Jun 14 1998

Keywords

Crossrefs

Subsequence of primes of A089038.

Programs

Formula

a(n) == 1 (mod 6) for n>=2. - John Cerkan, Sep 07 2016

A023206 Numbers m such that m and 2*m + 7 both prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 41, 47, 53, 71, 83, 113, 131, 137, 173, 191, 197, 227, 251, 257, 281, 293, 317, 347, 383, 401, 461, 467, 503, 521, 587, 593, 641, 647, 677, 683, 701, 743, 773, 797, 857, 863, 941, 947, 953, 971, 983, 1031, 1061, 1103, 1151, 1163, 1187, 1193, 1217
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A105760. Except for the first two terms, all terms are congruent to 5 mod 6. - John Cerkan, Sep 07 2016

Crossrefs

Programs

A023207 Numbers m such that m and 2*m + 9 both prime.

Original entry on oeis.org

2, 5, 7, 11, 17, 19, 29, 31, 37, 47, 59, 61, 71, 79, 101, 107, 109, 127, 131, 137, 149, 151, 179, 211, 227, 229, 239, 241, 257, 269, 277, 281, 311, 317, 337, 359, 367, 389, 401, 409, 439, 449, 479, 487, 491, 521, 541, 547, 557, 571, 577, 607, 641, 647, 659, 709, 719, 739
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A092110 Primes p such that 2p+3 and 2p-3 are both prime.

Original entry on oeis.org

5, 7, 13, 17, 43, 53, 67, 97, 113, 127, 137, 157, 167, 193, 223, 283, 487, 547, 563, 613, 617, 643, 647, 743, 773, 937, 1033, 1187, 1193, 1277, 1427, 1453, 1483, 1543, 1583, 1627, 1663, 1733, 1847, 2027, 2143, 2297, 2393, 2437, 2467, 2477, 2503, 2617, 2843
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Intersection of A023204 and A063908.
All numbers in this sequence end with 3 or 7 (except the first one, which is 5). See A136191 or A136192. - Carlos Alves, Dec 20 2007

Examples

			From _K. D. Bajpai_, Sep 08 2020: (Start)
7 is a term because 2*7 + 3 = 17 and 2*7 - 3 = 11 are both prime.
13 is a term because 2*13 + 3 = 29 and 2*13 - 3 = 23 are both prime.
(End)
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000)|IsPrime(2*p-3) and IsPrime(2*p+3)] // Vincenzo Librandi, Nov 16 2010
  • Maple
    select(p -> isprime(p) and isprime(2*p+3) and isprime(2*p-3), [seq(2*k+1, k=1..1000)]); # K. D. Bajpai, Sep 08 2020
  • Mathematica
    Select[Prime@Range@1000,PrimeQ[2#-3]&&PrimeQ[2#+3]&] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2011 *)

A258141 Number of ways to write n as p^2 + q with p, q and 2*p + 3 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 1, 2, 0, 2, 0, 0, 1, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2, 1, 0, 0, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, May 22 2015

Keywords

Comments

Conjecture: For any integer n > 0, we have a(n+r) > 0 for some r = 0,1,2,3,4,5.
We have verified this for n up to 10^8. See also A258139 for a weaker version of this conjecture.
The conjecture is somewhat similar to Goldbach's Conjecture. It implies that there are infinitely many primes p with 2*p + 3 prime.

Examples

			a(11) = 1 since 11 = 2^2 + 7 with 2, 7 and 2*2 + 3 all prime.
		

Crossrefs

Programs

  • Mathematica
    Do[r=0;Do[If[PrimeQ[2Prime[k]+3]&&PrimeQ[n-Prime[k]^2],r=r+1],{k,1,PrimePi[Sqrt[n]]}];Print[n," ",r];Continue,{n,1,100}]
Showing 1-10 of 31 results. Next