cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A089532 A089531 indexed by A000040.

Original entry on oeis.org

4, 6, 7, 10, 12, 13, 18, 24, 25, 29, 33, 35, 42, 45, 50, 55, 59, 60, 66, 68, 70, 77, 78, 79, 87, 88, 89, 100, 102, 104, 113, 123, 126, 127, 135, 136, 139, 142, 152, 158, 159, 165, 169, 172, 176, 184, 187, 189, 197, 199, 201, 203, 209, 211, 216, 234, 237, 244, 251
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Formula

a(n)=k such that A089531(n)=A000040(k).

A023204 Primes p such that 2*p + 3 is also prime.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 29, 43, 47, 53, 67, 73, 89, 97, 113, 127, 137, 139, 157, 167, 173, 193, 197, 199, 223, 227, 229, 269, 277, 283, 307, 337, 349, 353, 379, 383, 397, 409, 439, 463, 467, 487, 503, 509, 523, 547, 557, 563, 599, 607, 613, 617, 643, 647, 659, 739, 743, 773
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

A067076 INTERSECT A000040. - R. J. Mathar, Mar 23 2017

A092109 Primes p such that p+3 is a semiprime.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 59, 71, 79, 83, 103, 131, 139, 163, 191, 199, 211, 223, 251, 271, 311, 331, 359, 379, 383, 419, 443, 463, 479, 499, 523, 563, 619, 631, 659, 691, 743, 839, 859, 863, 883, 911, 919, 971, 1039, 1091, 1123, 1151, 1171, 1223, 1231, 1259
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Primes p such that p-3 is semiprime are in A089531; p and 2p+3 both prime, A023204; p, 2p-3 and 2p+3 prime, A092110.
Primes p such that (p+3)/2 is prime. All these primes are congruent to 3 mod 4. - Artur Jasinski, Oct 11 2008
Subsequence of A131426. - Zak Seidov, Mar 29 2015
Subsequence of A091305. - David Radcliffe, May 22 2022

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(1300)| IsSemiprime(p+3)]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    select(p -> isprime(p) and isprime((p+3)/2), [seq(2*k+1,k=1..1000)]); # Robert Israel, Mar 29 2015
  • Mathematica
    aa = {}; k = 3; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 100}]; aa (* Artur Jasinski, Oct 11 2008 *)
    Select[Prime[Range[300]],PrimeOmega[#+3]==2&] (* Harvey P. Dale, Feb 07 2018 *)
  • PARI
    is(n)=n%2 && isprime((n+3)/2) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = 2*A063908(n)-3 = 4*A115334(n)+3. - Artur Jasinski, Oct 11 2008

A089530 A023204 indexed by A000040.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 10, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 34, 37, 39, 40, 44, 45, 46, 48, 49, 50, 57, 59, 61, 63, 68, 70, 71, 75, 76, 78, 80, 85, 90, 91, 93, 96, 97, 99, 101, 102, 103, 109, 111, 112, 113, 117, 118, 120, 131, 132, 137, 139, 140, 144, 147, 149, 154
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | IsPrime(2*NthPrime(n)+3)]; // Vincenzo Librandi, May 02 2016
  • Mathematica
    Select[Range[160], PrimeQ[2 Prime[#] + 3] &] (* Vincenzo Librandi, May 02 2016 *)

Formula

a(n)=k such that A023204(n)=A000040(k).

A092110 Primes p such that 2p+3 and 2p-3 are both prime.

Original entry on oeis.org

5, 7, 13, 17, 43, 53, 67, 97, 113, 127, 137, 157, 167, 193, 223, 283, 487, 547, 563, 613, 617, 643, 647, 743, 773, 937, 1033, 1187, 1193, 1277, 1427, 1453, 1483, 1543, 1583, 1627, 1663, 1733, 1847, 2027, 2143, 2297, 2393, 2437, 2467, 2477, 2503, 2617, 2843
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Intersection of A023204 and A063908.
All numbers in this sequence end with 3 or 7 (except the first one, which is 5). See A136191 or A136192. - Carlos Alves, Dec 20 2007

Examples

			From _K. D. Bajpai_, Sep 08 2020: (Start)
7 is a term because 2*7 + 3 = 17 and 2*7 - 3 = 11 are both prime.
13 is a term because 2*13 + 3 = 29 and 2*13 - 3 = 23 are both prime.
(End)
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000)|IsPrime(2*p-3) and IsPrime(2*p+3)] // Vincenzo Librandi, Nov 16 2010
  • Maple
    select(p -> isprime(p) and isprime(2*p+3) and isprime(2*p-3), [seq(2*k+1, k=1..1000)]); # K. D. Bajpai, Sep 08 2020
  • Mathematica
    Select[Prime@Range@1000,PrimeQ[2#-3]&&PrimeQ[2#+3]&] (* Vladimir Joseph Stephan Orlovsky, Apr 25 2011 *)

A089528 Primes p of the form 2*prime(k) + 3 such that 2*prime(k+1) + 3 is the next prime after p.

Original entry on oeis.org

13, 37, 89, 277, 389, 397, 449, 457, 701, 761, 929, 2069, 2221, 2609, 2857, 3121, 3217, 3221, 6329, 7229, 7537, 7649, 8581, 8677, 9277, 9941, 11317, 11681, 12401, 13421, 13469, 15649, 16729, 17401, 17497, 17729, 18257, 19289, 19489, 19937, 20509
Offset: 1

Views

Author

Ray Chandler, Nov 07 2003

Keywords

Examples

			p(3)=5, 2*5 + 3 = 13 = p(6);
p(4)=7, 2*7 + 3 = 17 = p(7).
		

Crossrefs

Subsequence of A089531.

Programs

  • Mathematica
    Select[Partition[2#+3&/@Prime[Range[2500]],2,1],AllTrue[#,PrimeQ] && NextPrime[ #[[1]]]==#[[2]]&][[All,1]] (* Harvey P. Dale, Dec 14 2021 *)
  • PARI
    forprime(p=2,10500,my(p23=2*p+3);if(isprime(p23),my(pp=2*nextprime(p+1)+3);if(isprime(pp)&&pp==nextprime(p23+1),print1(p23,", ")))) \\ Hugo Pfoertner, Aug 04 2021

Formula

a(n) = 2*A089527(n) + 3 = 2*A000040(A089526(n)) + 3 = A000040(A089529(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 04 2021

A230225 Primes p such that 2*p+1 and 2*p+3 are not prime.

Original entry on oeis.org

31, 37, 59, 61, 71, 79, 101, 103, 107, 109, 149, 151, 163, 181, 211, 241, 257, 263, 271, 311, 313, 317, 331, 347, 367, 373, 389, 401, 421, 433, 449, 457, 461, 479, 499, 521, 541, 569, 571, 577, 587, 601, 619, 631, 661, 673, 677, 691, 701, 709, 727, 733, 751
Offset: 1

Views

Author

Vincenzo Librandi, Oct 12 2013

Keywords

Examples

			31 is in the sequence because 2*31+1=63 and 2*31+3=65 are not prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|not IsPrime(2*p+1) and not IsPrime(2*p+3)];
  • Mathematica
    Select[Range[10^3], PrimeQ[#]&&!PrimeQ[2 # + 1]&&!PrimeQ[2 # + 3]&]
    Select[Prime[Range[200]],NoneTrue[2#+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 19 2021 *)

A165947 Primes of the form 2q + 3 where q is composite.

Original entry on oeis.org

11, 19, 23, 31, 43, 47, 53, 59, 67, 71, 73, 79, 83, 101, 103, 107, 113, 127, 131, 139, 151, 157, 163, 167, 173, 179, 191, 193, 199, 211, 223, 227, 233, 239, 241, 251, 263, 269, 271, 283, 293, 307, 311, 313, 331, 347, 353, 359, 367, 373, 379, 383, 409, 419, 421
Offset: 1

Views

Author

Claudio Meller, Oct 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Table[If[PrimeQ[n],0,2n+3],{n,2,500}],PrimeQ]  (* Harvey P. Dale, Mar 25 2011 *)
  • PARI
    lista(nn) = forcomposite(q=4, nn, if(isprime(p=2*q+3), print1(p, ", "))); \\ Altug Alkan, Apr 18 2016

Formula

A000040 \ { {2,3,5} U A089531}. - R. J. Mathar, Oct 28 2009

A217197 Primes p such that p-3 is the greatest semiprime less than p.

Original entry on oeis.org

13, 29, 61, 109, 137, 149, 181, 197, 229, 257, 277, 281, 317, 349, 389, 401, 457, 461, 541, 557, 569, 617, 677, 761, 797, 821, 929, 937, 977, 1021, 1097, 1129, 1217, 1237, 1289, 1297, 1321, 1481, 1489, 1549, 1597, 1621, 1721, 1777, 1861, 1877, 1997, 2029
Offset: 1

Views

Author

Antonio Roldán, Sep 27 2012

Keywords

Comments

Subsequence of A089531.

Examples

			977 is prime, 976 = 2^4*61 and 975 = 3*5^2*13 are not semiprimes, 974 = 2*487 is a semiprime.
		

Crossrefs

Cf. A217195.

Programs

  • Mathematica
    SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; Select[Prime[Range[500]], ! SemiPrimeQ[# - 1] && ! SemiPrimeQ[# - 2] && SemiPrimeQ[# - 3] &] (* T. D. Noe, Sep 27 2012 *)
  • PARI
    forprime(p=5, 9999, bigomega(p-3)==2 && bigomega(p-1)!=2 && bigomega(p-2)!=2 & print1(p", "))

A247010 Primes p such that (p-3)/2 and 2*p+3 are both prime.

Original entry on oeis.org

7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2014

Keywords

Comments

A023204 INTERSECT A089531. After 7, all terms are obviously in A002144.
Conjecture: the sequence is infinite.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
    
  • Mathematica
    Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
  • PARI
    is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
  • Sage
    def t(i): return 2*i+3
    [t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
    

Formula

a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]
Showing 1-10 of 13 results. Next