cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A090216 Generalized Stirling2 array S_{5,5}(n,k).

Original entry on oeis.org

1, 120, 600, 600, 200, 25, 1, 14400, 504000, 2664000, 4608000, 3501000, 1350360, 284800, 33800, 2225, 75, 1, 1728000, 371520000, 7629120000, 42762240000, 97388280000, 110386900800, 70137648000, 26920728000, 6548346000, 1039382000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is [1, 6, 11, 16, 21, 26, 31,...]= A016861(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=5) is G(k,x)= x^ceiling(k/5)*P(k,x)/product(1-fallfac(p,5)*x,p=5..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A090222(k,m)*x^m,m=0..kmax(k)), k>=5, with kmax(k) := floor(4*(k-5)/5)= A090223(k-5). For the recurrence of the G(k,x) see A090222.

Examples

			Triangle begins:
  [1];
  [120,600,600,200,25,1];
  [14400,504000,2664000,4608000,3501000,1350360,284800,33800,2225,75,1];
  ...
		

Crossrefs

Cf. A090217, A090209 (row sums), A090218 (alternating row sums).

Programs

  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; Table[a[n, k], {n, 1, 5}, {k, 5, 5*n}] // Flatten (* Jean-François Alcover, Mar 05 2014 *)
  • Python
    from sympy import binomial, factorial, ff
    def a(n, k): return sum((-1)**p * binomial(k, p) * ff(p, 5)**n for p in range(5, k+1)) * (-1)**k / factorial(k) # David Radcliffe, Jul 01 2025

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*fallfac(p, 5)^n, p=5..k), with fallfac(p, 5) := A008279(p, 5)=product(p+1-q, q=1..5); 5<= k <= 5*n, n>=1, else 0. From eq.(19) with r=5 of the Blasiak et al. reference.
E^n = Sum_{k=5..5n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^5d^5/dx^5.

A090222 Array used for numerators of g.f.s for column sequences of array A090216 ((5,5)-Stirling2).

Original entry on oeis.org

1, 600, 600, 648000, 200, 2592000, 1270080000, 25, 2871000, 13592880000, 4267468800000, 1, 1294920, 36462182400, 100221504768000, 23228686172160000, 284800, 38559024000, 551224880640000, 1056582600192000000
Offset: 5

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is A090223(k-5)+1= floor(4*(k-5)/5)+1, k>=5: [1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, ...].
The g.f. G(k,x) for the k-th column (with leading zeros) of array A090216 is given there. The recurrence is G(k,x) = x*sum(binomial(k-r,5-r)*fallfac(5,5-r)*G(k-r,x),r=1..5))/(1-fallfac(k,5)*x), k>=5, with inputs G(k,x)=0 for k=1,2,3,4 and G(5,x)=x/(1-5!*x); where fallfac(n,m) := A008279(n,m) (falling factorials with fallfac(n,0) := 1). Computed from the Blasiak et al. reference, eqs. (20) and (21) with r=5: recurrence for S_{5,5}(n,k).

Examples

			[1]; [600]; [648000,200]; [2592000,1270080000,25]; ...
G(6,x)/x^2 = 600/((1-5!*x)*(1-6*5*4*3*2*x)). kmax(6)=0, hence P(6,x)=a(6,0)=600; x^2 from x^ceiling(6/5).
		

Formula

a(k, n) from: sum(a(k, n)*x^n, n=0..kmax(k)) = G(k, x)* product(1-fallfac(p, 5)*x, p=5..k)/x^ceiling(k/5), k>=5, with G(k, x) defined from the recurrence given above and kmax(k) := floor(4*(k-5)/5)= A090223(k-5).

A226096 Squares with doubled (4*n+2)^2.

Original entry on oeis.org

1, 4, 4, 9, 16, 25, 36, 36, 49, 64, 81, 100, 100, 121, 144, 169, 196, 196, 225, 256, 289, 324, 324, 361, 400, 441, 484, 484, 529, 576, 625, 676, 676, 729, 784, 841, 900, 900, 961, 1024, 1089, 1156, 1156, 1225, 1296, 1369
Offset: 0

Views

Author

Paul Curtz, May 26 2013

Keywords

Comments

Also nondecreasing ordered values of A226008 (except 0).
Consider A225948/A226008 ordered according to a(n): 0/1, -15/4, -3/4, 2/9, 3/16, 6/25, -7/36, 5/36, 12/49, 15/64, 20/81, ... = b(n)/a(n), and consider the sequence with period 5: 1, 64, 16, 1, 4, ... = t(n); then a(n) = 4*b(n) + t(n).
The recurrences in Formula lines are also valid for b(n).
Note that the fractions b(n)/a(n) of rank 0, 3,4,5, 8,9,10, ... = A047205:
0, 2/9, 3/16, 6/25, 12/49, 15/64, 20/81, ... are all in A226023(n).

Crossrefs

Programs

  • Mathematica
    MapIndexed[ If [Mod[First[#2], 4] == 2, Sequence @@ {#1, #1}, #1] &, Range[40]]^2 (* Jean-François Alcover, May 28 2013 *)

Formula

a(n+5) - a(n) = 8*A090223(n+4).
a(n) = 1 followed by (A090223(n) + 2)^2.
a(n) = 3*a(n-5) -3*a(n-10) +a(n-15).
G.f.: (x^9 + 3*x^8 + 5*x^6 + 7*x^5 + 7*x^4 + 5*x^3 + 3*x + 1)/((1 - x)*(1 - x^5)^2). [Ralf Stephan, May 30 2013]
a(n) = a(n-1) +2*a(n-5) -2*a(n-6) -a(n-10) +a(n-11). [Bruno Berselli, May 30 2013]
a(n) = (24*(16*floor(n/5)^2 + 8*floor(n/5) + 1) - (11 + 24*floor(n/5))*(n - 5*floor(n/5))^4 + 2*(49 + 104*floor(n/5))*(n - 5*floor(n/5))^3 - 23*(11 + 24*floor(n/5))*(n - 5*floor(n/5))^2 + 2*(119 + 280*floor(n/5))*(n - 5*floor(n/5)))/24. - Luce ETIENNE, May 08 2017

A279169 a(n) = floor( 4*n^2/5 ).

Original entry on oeis.org

0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0

Views

Author

Bruno Berselli, Dec 07 2016

Keywords

Crossrefs

Cf. A090223: floor(4*n/5).
Subsequence of A008728, A014601, A118015, A131242.
Cf. similar sequences with closed form floor(k*n^2/5): A118015 (k=1), A033437 (k=2), A184535 (k=3).

Programs

  • Magma
    [4*n^2 div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n^2/5], {n, 0, 60}]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    vector(60, n, n--; floor(4*n^2/5))
    
  • Python
    [int(4*n**2/5) for n in range(60)]
    
  • Sage
    [floor(4*n^2/5) for n in range(60)]
    

Formula

O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
a(n) = A118015(2*n) = A008728(4*n+2) = A131242(4*n+4) = A014601(floor(2*n^2/5)).
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022

A034115 Fractional part of square root of a(n) starts with 9: first term of runs.

Original entry on oeis.org

35, 48, 63, 80, 99, 119, 142, 167, 194, 223, 253, 286, 321, 358, 397, 437, 480, 525, 572, 621, 671, 724, 779, 836, 895, 955, 1018, 1083, 1150, 1219, 1289, 1362, 1437, 1514, 1593, 1673, 1756, 1841, 1928, 2017, 2107, 2200, 2295, 2392, 2491, 2591, 2694
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1998

Keywords

Comments

How is this different from A034105? - N. J. A. Sloane, Mar 30 2007
Answer: A034115 has the starts of runs of consecutive values of A034105. That is, frac{sqrt[a(n)]} >= 0.9, but frac{sqrt[a(n)-1]} < 0.9. - Don Reble, Jul 17 2020

Examples

			358, 359 and 360 are a run of 3 numbers in A034105, so 358 is in this sequence, but 359 and 360 are not. - _R. J. Mathar_, Jul 21 2020
		

Crossrefs

Programs

  • Mathematica
    Join[{35},Select[Partition[Select[Range[3000],NumberDigit[Sqrt[#],-1] == 9&],2,1],(#[[2]]-#[[1]]!=1&)][[All,2]]] (* or *) LinearRecurrence[{2,-1,0,0,1,-2,1},{35,48,63,80,99,119,142},50] (* Harvey P. Dale, Aug 14 2021 *)

Formula

a(n) = n^2 + 9*n + 25 + floor(4*n / 5) = A027690(n+4)+A090223(n). - Don Reble, Jul 17 2020

A327440 a(n) = floor(3*n/10).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23
Offset: 0

Views

Author

Bruno Berselli, Sep 11 2019

Keywords

Comments

The sequence can be obtained from A008585 by deleting the last digit of each term.

Crossrefs

Cf. A008585.
Similar sequences with the formula floor(k*n/10): A059995 (k=1); A002266 (k=2); A057354 (k=4); A004526 (k=5); A057355 (k=6); A188511 (k=7); A090223 (k=8).

Programs

  • Julia
    [div(3*n, 10) for n in 0:80] |> println
    
  • Mathematica
    Table[Floor[3 n/10], {n, 0, 80}]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3}, 80]
  • PARI
    vector(80, n, n--; floor(3*n/10))

Formula

O.g.f.: x^4*(1 + x^3 + x^6)/((1 + x)*(1 - x)^2*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) = (x^4 + x^7 + x^10)/(1 - x - x^10 + x^11).
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10.
Showing 1-6 of 6 results.