A090390 Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.
1, 1, 9, 49, 289, 1681, 9801, 57121, 332929, 1940449, 11309769, 65918161, 384199201, 2239277041, 13051463049, 76069501249, 443365544449, 2584123765441, 15061377048201, 87784138523761, 511643454094369, 2982076586042449, 17380816062160329, 101302819786919521, 590436102659356801
Offset: 0
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (5,5,-1).
Programs
-
Haskell
a090390 n = a090390_list !! n a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $ tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list -- Reinhard Zumkeller, Aug 17 2013
-
Magma
[Evaluate(DicksonFirst(n,-1),2)^2/4: n in [0..40]]; // G. C. Greubel, Aug 21 2022
-
Maple
a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 17 2013
-
Mathematica
CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)),{x, 0, 30}], x] (* Harvey P. Dale, May 20 2012 *) LinearRecurrence[{5,5,-1}, {1,1,9}, 30] (* Harvey P. Dale, May 20 2012 *) Table[(ChebyshevT[n,3]+(-1)^n)/2, {n,0,30}] (* Eric W. Weisstein, Apr 17 2018 *) (LucasL[Range[0, 40], 2]/2)^2 (* G. C. Greubel, Aug 21 2022 *)
-
PARI
a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n),n)
-
PARI
a(n)=if(n<0,0,([1,2,2;2,1,2;2,2,3]^n)[1,1])
-
PARI
Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
-
Perl
use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20;$i++) { $p = $p->multiply($a); $p->print(); }
-
SageMath
[lucas_number2(n,2,-1)^2/4 for n in (0..40)] # G. C. Greubel, Aug 21 2022
Formula
G.f.: (1-4*x-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2
(a, b, c) = (1, 0, 0). Recursively multiply (a, b, c)*( [1, 2, 2], [2, 1, 2], [2, 2, 3] ).
M^n * [ 1 1 1] = [a(n+1) q a(n)], where M = the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. E.g. M^5 * [1 1 1] = [9801 4059 1681] where 9801 = a(6), 1681 = a(5). Similarly, M^n * [1 0 0] generates A079291 (Pell number squares). - Gary W. Adamson, Oct 31 2004
a(n) = (((1+sqrt(2))^(2*n) + (1-sqrt(2))^(2*n)) + 2*(-1)^n)/4 - Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 09 2005
a(n) = (A001541(n) + (-1)^n)/2. - R. J. Mathar, Nov 20 2009
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), with a(0)=1, a(1)=1, a(2)=9. - Harvey P. Dale, May 20 2012
(a(n)) = tesseq(- .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e), apart from initial term. - Creighton Dement, Nov 16 2004
a(n) = A302946(n)/4. - Eric W. Weisstein, Apr 17 2018
E.g.f.: exp(-x)*(1 + exp(4*x)*cosh(2*sqrt(2)*x))/2. - Stefano Spezia, Aug 03 2024
Comments