cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090390 Repeatedly multiply (1,0,0) by ([1,2,2],[2,1,2],[2,2,3]); sequence gives leading entry.

Original entry on oeis.org

1, 1, 9, 49, 289, 1681, 9801, 57121, 332929, 1940449, 11309769, 65918161, 384199201, 2239277041, 13051463049, 76069501249, 443365544449, 2584123765441, 15061377048201, 87784138523761, 511643454094369, 2982076586042449, 17380816062160329, 101302819786919521, 590436102659356801
Offset: 0

Views

Author

Vim Wenders, Jan 30 2004

Keywords

Comments

The values of a and b in (a,b,c)*A give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1; the values of c are A000129(2n)
Binomial transform of A086348. - Johannes W. Meijer, Aug 01 2010
All values of a(n) are squares. sqrt(a(n+1)) = A001333(n). The ratio a(n+1)/a(n) converges to 3 + 2*sqrt(2). - Richard R. Forberg, Aug 14 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Programs

  • Haskell
    a090390 n = a090390_list !! n
    a090390_list = 1 : 1 : 9 : zipWith (-) (map (* 5) $
       tail $ zipWith (+) (tail a090390_list) a090390_list) a090390_list
    -- Reinhard Zumkeller, Aug 17 2013
    
  • Magma
    [Evaluate(DicksonFirst(n,-1),2)^2/4: n in [0..40]]; // G. C. Greubel, Aug 21 2022
    
  • Maple
    a:= n-> (<<1|0|0>>. <<1|2|2>, <2|1|2>, <2|2|3>>^n)[1, 1]:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 17 2013
  • Mathematica
    CoefficientList[Series[(1-4x-x^2)/((1+x)(1-6x+x^2)),{x, 0, 30}], x] (* Harvey P. Dale, May 20 2012 *)
    LinearRecurrence[{5,5,-1}, {1,1,9}, 30] (* Harvey P. Dale, May 20 2012 *)
    Table[(ChebyshevT[n,3]+(-1)^n)/2, {n,0,30}] (* Eric W. Weisstein, Apr 17 2018 *)
    (LucasL[Range[0, 40], 2]/2)^2 (* G. C. Greubel, Aug 21 2022 *)
  • PARI
    a(n)=polcoeff((1-4*x-x^2)/((1+x)*(1-6*x+x^2))+x*O(x^n),n)
    
  • PARI
    a(n)=if(n<0,0,([1,2,2;2,1,2;2,2,3]^n)[1,1])
    
  • PARI
    Vec( (1-4*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 16 2013
    
  • Perl
    use Math::Matrix; use Math::BigInt; $a = new Math::Matrix ([ 1, 2, 2], [ 2, 1, 2], [ 2, 2, 3]); $p = new Math::Matrix ([1, 0, 0]); $p->print(); for ($i=1; $i<20;$i++) { $p = $p->multiply($a); $p->print(); }
    
  • SageMath
    [lucas_number2(n,2,-1)^2/4 for n in (0..40)] # G. C. Greubel, Aug 21 2022

Formula

G.f.: (1-4*x-x^2)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2
(a, b, c) = (1, 0, 0). Recursively multiply (a, b, c)*( [1, 2, 2], [2, 1, 2], [2, 2, 3] ).
M^n * [ 1 1 1] = [a(n+1) q a(n)], where M = the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. E.g. M^5 * [1 1 1] = [9801 4059 1681] where 9801 = a(6), 1681 = a(5). Similarly, M^n * [1 0 0] generates A079291 (Pell number squares). - Gary W. Adamson, Oct 31 2004
a(n) = (((1+sqrt(2))^(2*n) + (1-sqrt(2))^(2*n)) + 2*(-1)^n)/4 - Lambert Klasen (lambert.klasen(AT)gmx.net), Oct 09 2005
a(n) = (A001541(n) + (-1)^n)/2. - R. J. Mathar, Nov 20 2009
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3), with a(0)=1, a(1)=1, a(2)=9. - Harvey P. Dale, May 20 2012
(a(n)) = tesseq(- .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e), apart from initial term. - Creighton Dement, Nov 16 2004
a(n) = A302946(n)/4. - Eric W. Weisstein, Apr 17 2018
E.g.f.: exp(-x)*(1 + exp(4*x)*cosh(2*sqrt(2)*x))/2. - Stefano Spezia, Aug 03 2024