cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A090100 Numbers n such that n and the four successive integers produce primes if substituted for x in the polynomial 5x^2+5x+1. See A090562, A090563. Terms show that longer similar chains also exist.

Original entry on oeis.org

1, 2, 3, 13, 266, 321, 322, 323, 344, 641, 1324, 5436, 16700, 16701, 19857, 19858, 28151, 28152, 30648, 31253, 32045, 45773, 48710, 50923, 52397, 57357, 57358, 63879, 63880, 63881, 72615, 73164, 73165, 78785, 81831, 87640, 87641, 91116
Offset: 1

Views

Author

Labos Elemer, Dec 12 2003

Keywords

Comments

For examples of longer similar chains, if n = 1, 321, or 63879, the polynomial produces 7 consecutive prime terms (including n). - Harvey P. Dale, May 04 2024

Crossrefs

Programs

  • Mathematica
    Do[s=5*n^2+5*n+1;s1=5*(n+1)^2+5*(n+1)+1; s2=5*(n+2)^2+5*(n+2)+1;s3=5*(n+3)^2+5*(n+3)+1; s4=5*(n+4)^2+5*(n+4)+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&& PrimeQ[s3]&&PrimeQ[s4], Print[n]], {n, 1, 100000}]
    SequencePosition[Table[If[PrimeQ[5n^2+5n+1],1,0],{n,100000}],{1,1,1,1,1}][[;;,1]] (* Harvey P. Dale, May 04 2024 *)

A090563 Numbers k such that 5*k^2 + 5*k + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 30, 32, 35, 36, 38, 43, 44, 49, 52, 54, 55, 60, 61, 62, 63, 66, 69, 70, 71, 73, 74, 79, 80, 81, 82, 85, 87, 88, 93, 94, 101, 104, 106, 107, 109, 110, 112, 114, 115, 117, 123, 127, 128, 131, 135
Offset: 1

Views

Author

Amarnath Murthy, Dec 11 2003

Keywords

Crossrefs

Cf. A090562.

Programs

  • Mathematica
    Do[s=5*n^2+5*n+1; If[PrimeQ[s], Print[n]], {n, 1, 1000}]
    Select[Range[1000], PrimeQ[5 #^2 + 5 # + 1] &] (* Robert Price, Apr 13 2025 *)
  • PARI
    isok(n) = isprime(5*n^2+5*n+1); \\ Michel Marcus, Apr 30 2016

Extensions

More terms from Labos Elemer, Dec 12 2003
Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A090102 Leading prime in each set of 7 arising in A090101.

Original entry on oeis.org

11, 516811, 20402952601, 196260616589761, 239536538008051, 426813020692661, 2681027962124411, 3605832801512401, 6450361508166761, 10392841156929031, 13162202092936411, 13655671002023851, 14501847401205811
Offset: 1

Views

Author

Labos Elemer, Dec 15 2003

Keywords

Examples

			a[15] = 69981018761651281 is first of following chain: {69981018761651281, 69981019944706811, 69981021127762351, 69981022310817901, 69981023493873461, 69981024676929031, 69981025859984611} = {P[k], P[k+1], ..., P[k+6]}, where k = A090101[15] and P[x] = 5x^2+5x+1. See A090562, A090563.
		

Crossrefs

Programs

  • Mathematica
    po[x_] := 5*x^2+5*x+1 Do[s=po[n];s0=po[n];s1=po[n+1];s2=po[n+2];s3=po[n+3];s4=po[n+4]; s5=po[n+5];s6=po[n+6];If[IntegerQ[n/100000], Print[{n}]]; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5] &&PrimeQ[s6], Print[s0]], {n, 1, 120000000}]

A090101 Numbers n such that n and the 6 successive integers yield primes if substituted for x in polynomial 5x^2+5x+1.

Original entry on oeis.org

1, 321, 63879, 6265151, 6921510, 9239188, 23156113, 26854544, 35917576, 45591317, 51307313, 52260254, 53855078, 71731838, 118305552, 124220571, 124234464, 150767861, 170448863, 192850264
Offset: 1

Views

Author

Labos Elemer, Dec 12 2003

Keywords

Examples

			a[15]=118305552 and the corresponding seven "polynomially consecutive" primes are: {69981018761651281, 69981019944706811, 69981021127762351, 69981022310817901, 69981023493873461, 69981024676929031, 69981025859984611}
		

Crossrefs

Programs

  • Mathematica
    po[x_] := 5*x^2+5*x+1 Do[s=po[n];s0=po[n];s1=po[n+1];s2=po[n+2];s3=po[n+3];s4=po[n+4]; s5=po[n+5];s6=po[n+6];If[IntegerQ[n/100000], Print[{n}]]; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5] &&PrimeQ[s6], Print[{n, s0, s1, s2, s3, s4, s5, s6}]], {n, 1, 120000000}]
    Select[Range[193*10^6],AllTrue[Table[5x^2+5x+1,{x,Range[#,#+6]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 02 2020 *)

Extensions

More terms from Don Reble, Dec 14 2003

A090107 Values of k such that {P(k), P(k+1), ..., P(k+9)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 10 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 106 provides a chain of 10 "polynomially consecutive" primes as follows: {4463, 4597, 4733, 4871, 5011, 5153, 5297, 5443, 5591, 5741}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 10, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(10, k, isp(k))); for(k = 11, kmax, if(vecprod(v) == 1, print1(k - 10, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A090108 Values of k such that {P(k), P(k+1), ..., P(k+8)} are all prime numbers, whereP(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 9 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 263 provides a chain of 9 "polynomially consecutive" primes as follows: {49993, 50441, 50891, 51343, 51797, 52253, 52711, 53171, 53633}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 9, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(9, k, isp(k))); for(k = 10, kmax, if(vecprod(v) == 1, print1(k - 9, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

A276261 Centered 21-gonal primes.

Original entry on oeis.org

127, 211, 757, 2521, 2857, 6301, 8527, 16381, 19867, 23689, 24697, 27847, 32341, 37171, 38431, 42337, 66361, 68041, 82237, 89839, 97777, 103951, 114661, 140071, 152461, 162751, 170689, 192781, 204331, 216217, 231547, 240997, 284131, 308827, 353557, 357421, 385057, 389089
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (21*k^2 + 21*k + 2)/2.
Numbers k such that (21*k^2 + 21*k + 2)/2 is prime: 3, 4, 8, 15, 16, 24, 28, 39, 43, 47, 48, 51, 55, 059, 60, 63, 79, 80, 88, 92, 96, 99, ...

Crossrefs

Cf. similar sequences of the centered k-gonal primes: A125602 (k = 3), A027862 (k = 4), A145838 (k = 5), A002407 (k = 6), A144974 (k = 7), A090562 (k = 10), A262344 (k = 11), A262493 (k = 13), A264821 (k = 14), A264822 (k = 15), A264823 (k = 16), A264824 (k = 17), A264825 (k = 18), A264844 (k = 19), A264845 (k = 20), A201715 (k = 24).

Programs

  • Mathematica
    Intersection[Table[(21 k^2 + 21 k + 2)/2, {k, 0, 1000}], Prime[Range[33000]]]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(21*n^2 + 21*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016

A090109 Values of k such that {P(k), P(k+1), ..., P(k+10)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 259, 260, 261
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 11 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 1 provides the following non-monotonic (!) chain of 11 "polynomially consecutive" primes as follows: {1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 11, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(11, k, isp(k))); for(k = 12, kmax, if(vecprod(v) == 1, print1(k - 11, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A134462 Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.

Original entry on oeis.org

11, 101, 151, 1598951, 1128512158211, 104216919612401, 107635959536701, 106906347292743609601, 165901968762984246868642489267869109561
Offset: 1

Views

Author

Alexander Adamchuk, Oct 26 2007

Keywords

Comments

Sequence is the intersection of the palindromic primes = A002385 = {2, 3, 5, 7, 11, 101, 131, 151, ...} and the centered 10-gonal numbers = A062786 = {1, 11, 31, 61, 101, 151, ...}. Corresponding numbers k such that 5k^2 + 5k + 1 is a term of A134462 are listed in A134463 = {1, 4, 5, 565, 475081, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 10^25. - Donovan Johnson, Feb 13 2011
a(10) > 10^39. - Patrick De Geest, May 29 2021

Crossrefs

Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.
Cf. A134463 = Values of k such that 5k^2 + 5k + 1 is a palindromic prime.

Programs

  • Mathematica
    Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ f ] ], {k, 1, 500000} ]

Extensions

More terms from Tomas J. Bulka (tbulka(AT)rodincoil.com), Aug 30 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021

A134463 Values of k such that 5k^2 + 5k + 1 is a palindromic prime.

Original entry on oeis.org

1, 4, 5, 565, 475081, 4565455, 4639740, 4623988479, 5760242508141202328
Offset: 1

Views

Author

Alexander Adamchuk, Oct 26 2007

Keywords

Comments

Corresponding centered decagonal palindromic primes are 5k^2 + 5k + 1 = A134462 = {11, 101, 151, 1598951, 1128512158211, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 1414213562372. - Donovan Johnson, Feb 13 2011
a(10) > 14142135623730950488. - Patrick De Geest, May 29 2021

Crossrefs

Cf. A134462 = Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.
Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.

Programs

  • Mathematica
    Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ k ] ], {k, 1, 500000} ]

Extensions

a(6), a(7) from D. S. McNeil, Mar 02 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021
Showing 1-10 of 15 results. Next