cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A090100 Numbers n such that n and the four successive integers produce primes if substituted for x in the polynomial 5x^2+5x+1. See A090562, A090563. Terms show that longer similar chains also exist.

Original entry on oeis.org

1, 2, 3, 13, 266, 321, 322, 323, 344, 641, 1324, 5436, 16700, 16701, 19857, 19858, 28151, 28152, 30648, 31253, 32045, 45773, 48710, 50923, 52397, 57357, 57358, 63879, 63880, 63881, 72615, 73164, 73165, 78785, 81831, 87640, 87641, 91116
Offset: 1

Views

Author

Labos Elemer, Dec 12 2003

Keywords

Comments

For examples of longer similar chains, if n = 1, 321, or 63879, the polynomial produces 7 consecutive prime terms (including n). - Harvey P. Dale, May 04 2024

Crossrefs

Programs

  • Mathematica
    Do[s=5*n^2+5*n+1;s1=5*(n+1)^2+5*(n+1)+1; s2=5*(n+2)^2+5*(n+2)+1;s3=5*(n+3)^2+5*(n+3)+1; s4=5*(n+4)^2+5*(n+4)+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&& PrimeQ[s3]&&PrimeQ[s4], Print[n]], {n, 1, 100000}]
    SequencePosition[Table[If[PrimeQ[5n^2+5n+1],1,0],{n,100000}],{1,1,1,1,1}][[;;,1]] (* Harvey P. Dale, May 04 2024 *)

A090562 Primes of the form 5k^2 + 5k + 1.

Original entry on oeis.org

11, 31, 61, 101, 151, 211, 281, 661, 911, 1051, 1201, 1361, 1531, 1901, 2311, 2531, 3001, 3251, 3511, 4651, 5281, 6301, 6661, 7411, 9461, 9901, 12251, 13781, 14851, 15401, 18301, 18911, 19531, 20161, 22111, 24151, 24851, 25561, 27011, 27751
Offset: 1

Views

Author

Amarnath Murthy, Dec 11 2003

Keywords

Comments

Or, primes obtained as a concatenation of a triangular number and 1.
Centered decagonal primes. - Paul Muljadi, Oct 04 2005

Crossrefs

Programs

  • Magma
    [a: n in [0..100] | IsPrime(a) where a is 5*n^2 + 5*n + 1]; // Vincenzo Librandi, Dec 13 2011
  • Mathematica
    Select[5(#^2 - #) + 1 & /@ Range[75], PrimeQ[ # ] &] (* Robert G. Wilson v, Oct 10 2005 *)

Extensions

Edited and extended by Robert G. Wilson v, Oct 10 2005

A090102 Leading prime in each set of 7 arising in A090101.

Original entry on oeis.org

11, 516811, 20402952601, 196260616589761, 239536538008051, 426813020692661, 2681027962124411, 3605832801512401, 6450361508166761, 10392841156929031, 13162202092936411, 13655671002023851, 14501847401205811
Offset: 1

Views

Author

Labos Elemer, Dec 15 2003

Keywords

Examples

			a[15] = 69981018761651281 is first of following chain: {69981018761651281, 69981019944706811, 69981021127762351, 69981022310817901, 69981023493873461, 69981024676929031, 69981025859984611} = {P[k], P[k+1], ..., P[k+6]}, where k = A090101[15] and P[x] = 5x^2+5x+1. See A090562, A090563.
		

Crossrefs

Programs

  • Mathematica
    po[x_] := 5*x^2+5*x+1 Do[s=po[n];s0=po[n];s1=po[n+1];s2=po[n+2];s3=po[n+3];s4=po[n+4]; s5=po[n+5];s6=po[n+6];If[IntegerQ[n/100000], Print[{n}]]; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5] &&PrimeQ[s6], Print[s0]], {n, 1, 120000000}]

A090101 Numbers n such that n and the 6 successive integers yield primes if substituted for x in polynomial 5x^2+5x+1.

Original entry on oeis.org

1, 321, 63879, 6265151, 6921510, 9239188, 23156113, 26854544, 35917576, 45591317, 51307313, 52260254, 53855078, 71731838, 118305552, 124220571, 124234464, 150767861, 170448863, 192850264
Offset: 1

Views

Author

Labos Elemer, Dec 12 2003

Keywords

Examples

			a[15]=118305552 and the corresponding seven "polynomially consecutive" primes are: {69981018761651281, 69981019944706811, 69981021127762351, 69981022310817901, 69981023493873461, 69981024676929031, 69981025859984611}
		

Crossrefs

Programs

  • Mathematica
    po[x_] := 5*x^2+5*x+1 Do[s=po[n];s0=po[n];s1=po[n+1];s2=po[n+2];s3=po[n+3];s4=po[n+4]; s5=po[n+5];s6=po[n+6];If[IntegerQ[n/100000], Print[{n}]]; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5] &&PrimeQ[s6], Print[{n, s0, s1, s2, s3, s4, s5, s6}]], {n, 1, 120000000}]
    Select[Range[193*10^6],AllTrue[Table[5x^2+5x+1,{x,Range[#,#+6]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 02 2020 *)

Extensions

More terms from Don Reble, Dec 14 2003

A090107 Values of k such that {P(k), P(k+1), ..., P(k+9)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 10 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 106 provides a chain of 10 "polynomially consecutive" primes as follows: {4463, 4597, 4733, 4871, 5011, 5153, 5297, 5443, 5591, 5741}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 10, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(10, k, isp(k))); for(k = 11, kmax, if(vecprod(v) == 1, print1(k - 10, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A090108 Values of k such that {P(k), P(k+1), ..., P(k+8)} are all prime numbers, whereP(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 106
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 9 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 263 provides a chain of 9 "polynomially consecutive" primes as follows: {49993, 50441, 50891, 51343, 51797, 52253, 52711, 53171, 53633}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 9, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(9, k, isp(k))); for(k = 10, kmax, if(vecprod(v) == 1, print1(k - 9, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

A090109 Values of k such that {P(k), P(k+1), ..., P(k+10)} are all prime numbers, where P(k) = k^2 - 79*k + 1601.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 259, 260, 261
Offset: 1

Views

Author

Labos Elemer, Dec 29 2003

Keywords

Comments

a(n) is the first argument providing 11 "polynomially consecutive" primes with respect to the polynomial x^2 - 79*x + 1601 described by Escott in 1899.

Examples

			k = 1 provides the following non-monotonic (!) chain of 11 "polynomially consecutive" primes as follows: {1523, 1447, 1373, 1301, 1231, 1163, 1097, 1033, 971, 911, 853}.
		

Crossrefs

Programs

  • Mathematica
    Position[Times @@@ Partition[Table[Boole@PrimeQ[k^2 - 79*k + 1601], {k, 1, 1000}], 11, 1], 1] // Flatten (* Amiram Eldar, Sep 27 2024 *)
  • PARI
    isp(x) = isprime(x^2 - 79*x + 1601);
    lista(kmax) = {my(v = vector(11, k, isp(k))); for(k = 12, kmax, if(vecprod(v) == 1, print1(k - 11, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

Data corrected by Amiram Eldar, Sep 27 2024

A104012 Indices of centered dodecahedral numbers (A005904) which are semiprimes (A001358).

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 14, 15, 21, 26, 30, 35, 36, 44, 54, 63, 69, 74, 81, 114, 128, 131, 135, 138, 153, 165, 168, 191, 194, 209, 216, 224, 228, 231, 239, 261, 270, 303, 315, 321, 323, 326, 330, 336, 345, 363, 380, 384, 398, 404, 410, 411, 414, 429, 440, 443, 455, 468, 470
Offset: 1

Views

Author

Jonathan Vos Post, Feb 24 2005

Keywords

Comments

Because the cubic polynomial for centered dodecahedral numbers factors into n time an irreducible quadratic, the dodecahedral numbers can never be prime, but can be semiprime iff (2*n+1) is prime and (5*n^2+5*n+1) is prime. Centered dodecahedral numbers (A005904) are not to be confused with dodecahedral numbers (A006566) = n(3n-1)(3n-2)/2, nor with rhombic dodecahedral numbers (A005917).
Intersection of A005097 and A090563. - Michel Marcus, Apr 30 2016

Examples

			a(1) = 1 because A005904(1) = 33 = 3 * 11, which is semiprime.
a(2) = 2 because A005904(2) = 155 = 5 * 31, which is semiprime.
a(3) = 3 because A005904(3) = 427 = 7 * 61, which is semiprime.
a(4) = 5 because A005904(5) = 1661 = 11 * 151.
194 is in this sequence because A005904(194) = 73579739 = 389 * 189151, which is semiprime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(2*n+1) && isprime(5*n^2+5*n+1); \\ Michel Marcus, Apr 30 2016

Formula

n such that A001222(A005904(n)) = 2. n such that Bigomega((2*n+1)*(5*n^2 + 5*n + 1)) is 2. n such that A104011(n) = 2.

A090110 Values of k such that {P(k), P(k+1), ..., P(k+7)} are all prime numbers, where P(k) = 4*k^2 - 154*k + 1523.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 66, 129, 130, 328, 1619, 7509, 29714, 45905, 447588, 509862, 1022565, 1102373, 1388125, 1665379, 1762387, 1786292, 2111602, 2962834, 3391838
Offset: 1

Views

Author

Labos Elemer, Dec 30 2003

Keywords

Comments

The terms are arguments introducing a sequence of 8 polynomially consecutive primes with respect to 4*x^2 - 154*x + 1523, a polynomial communicated by Rivera (2003).

Examples

			k = 1 provides {1373, 1231, 1097, 971, 853, 743, 641, 547}, an 8-chain of primes.
		

Crossrefs

Programs

  • Mathematica
    okQ[x_] := And@@PrimeQ[Table[4n^2-154n+1523, {n,x,x+7}]];
    Select[Range[ 510000], okQ] (* Harvey P. Dale, May 25 2011 *)
  • PARI
    isp(x) = isprime(4*x^2 - 154*x + 1523);
    lista(kmax) = {my(v = vector(8, k, isp(k))); for(k = 9, kmax, if(vecprod(v) == 1, print1(k - 8, ", ")); v = concat(vecextract(v, "^1"), isp(k)));} \\ Amiram Eldar, Sep 27 2024

Extensions

a(43)-a(51) from Amiram Eldar, Sep 27 2024

A134462 Centered decagonal palindromic primes; or palindromic primes of the form 5k^2 + 5k + 1.

Original entry on oeis.org

11, 101, 151, 1598951, 1128512158211, 104216919612401, 107635959536701, 106906347292743609601, 165901968762984246868642489267869109561
Offset: 1

Views

Author

Alexander Adamchuk, Oct 26 2007

Keywords

Comments

Sequence is the intersection of the palindromic primes = A002385 = {2, 3, 5, 7, 11, 101, 131, 151, ...} and the centered 10-gonal numbers = A062786 = {1, 11, 31, 61, 101, 151, ...}. Corresponding numbers k such that 5k^2 + 5k + 1 is a term of A134462 are listed in A134463 = {1, 4, 5, 565, 475081, ...}. Note that the first 4 terms of A134463 are palindromic as well.
a(9) > 10^25. - Donovan Johnson, Feb 13 2011
a(10) > 10^39. - Patrick De Geest, May 29 2021

Crossrefs

Cf. A002385 = Palindromic primes.
Cf. A062786 = Centered 10-gonal numbers.
Cf. A090562 = Primes of the form 5k^2 + 5k + 1.
Cf. A090563 = Values of k such that 5k^2 + 5k + 1 is a prime.
Cf. A134463 = Values of k such that 5k^2 + 5k + 1 is a palindromic prime.

Programs

  • Mathematica
    Do[ f=5k^2+5k+1; If[ PrimeQ[f] && FromDigits[ Reverse[ IntegerDigits[ f ] ] ] == f, Print[ f ] ], {k, 1, 500000} ]

Extensions

More terms from Tomas J. Bulka (tbulka(AT)rodincoil.com), Aug 30 2009
a(8) from Donovan Johnson, Feb 13 2011
a(9) from Patrick De Geest, May 29 2021
Showing 1-10 of 16 results. Next