cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A100484 The primes doubled; Even semiprimes.

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

Essentially the same as A001747.
Right edge of the triangle in A065342. - Reinhard Zumkeller, Jan 30 2012
A253046(a(n)) > a(n). - Reinhard Zumkeller, Dec 26 2014
Apart from first term, these are the tau2-primes as defined in [Anderson, Frazier] and [Lanterman]. - Michel Marcus, May 15 2019
For every positive integer b and each m in this sequence b^(m-1) == b (mod m). - Florian Baur, Nov 26 2021

Crossrefs

Subsequence of A091376. After the initial 4 also a subsequence of A039956.
Cf. A001748, A253046, A353478 (characteristic function).
Row 3 of A286625, column 3 of A286623.

Programs

Formula

a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
A078834(a(n)) = A000040(n). - Reinhard Zumkeller, Sep 19 2011
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013

Extensions

Simpler definition.

A091371 Smallest prime factor of n - number of prime factors of n with multiplicity.

Original entry on oeis.org

1, 1, 2, 0, 4, 0, 6, -1, 1, 0, 10, -1, 12, 0, 1, -2, 16, -1, 18, -1, 1, 0, 22, -2, 3, 0, 0, -1, 28, -1, 30, -3, 1, 0, 3, -2, 36, 0, 1, -2, 40, -1, 42, -1, 0, 0, 46, -3, 5, -1, 1, -1, 52, -2, 3, -2, 1, 0, 58, -2, 60, 0, 0, -4, 3, -1, 66, -1, 1, -1, 70, -3, 72, 0, 0, -1, 5, -1, 78, -3
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 04 2004

Keywords

Comments

a(n) = A020639(n) - A001222(n).
a(A091375(n)) < 0. a(A091376(n)) = 0. a(A091377(n)) > 0.

Crossrefs

Programs

  • Maple
    with(numtheory); A091371:=n->`if`(n=1,1,min(op(factorset(n)))-bigomega(n)); seq(A091371(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013
  • Mathematica
    Array[FactorInteger[#][[1,1]]-PrimeOmega[#]&,80] (* Harvey P. Dale, May 25 2012 *)

Extensions

Definition clarified by Harvey P. Dale, May 25 2012

A091375 Numbers k with property that the number of prime factors of k (counted with repetition) exceeds the smallest prime factor of k.

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 52, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 100, 102, 104, 108, 110, 112, 114, 116, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 148, 150, 152, 154, 156, 160, 162
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 04 2004

Keywords

Comments

A091371(a(n)) < 0: A001222(a(n))>A020639(a(n)).
Numbers of the form m*i + n*j = k*(i+j), where i and j are > 1. - Giovanni Teofilatto, Aug 29 2007

Crossrefs

Programs

  • Mathematica
    Select[Range@ 162, Length@ Flatten[Table[#1, {#2}] & @@@ #] > #[[1, 1]] &@ FactorInteger@ # &] (* Michael De Vlieger, Jul 06 2016 *)
  • PARI
    is(n)=n>7 && bigomega(n) > factor(n)[1,1] \\ Charles R Greathouse IV, Jul 06 2016
    
  • PARI
    bigomegaAtLeast(n,k,startAt=2)=if(k<3, return(if(k==2,n>1&&!isprime(n),k==0||n>1))); forprime(p=startAt,logint(n,k), if(n%p==0, k-=valuation(n,p);n/=p^valuation(n,p); return(bigomegaAtLeast(n,k)))); 0
    is(n)=if(n%2==0,return(bigomegaAtLeast(n/2,2))); if(n%3==0,return(bigomegaAtLeast(n/3,3,3))); if(n<9,return(0)); forprime(p=5,log(n)/lambertw(log(n)), if(n%p==0, return(bigomegaAtLeast(n/p,p,p)))); 0 \\ Charles R Greathouse IV, Jul 06 2016

Extensions

Missing a(10001)-a(10424) inserted into b-file by Andrew Howroyd, Feb 25 2018
Definition clarified by N. J. A. Sloane, Jan 20 2020

A091377 Numbers having fewer prime factors than the value of their smallest prime factor.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 04 2004

Keywords

Comments

A091371(a(n)) > 0: A001222(a(n)) < A020639(a(n)).

Crossrefs

Programs

  • Mathematica
    Select[Range[143],PrimeOmega[#]James C. McMahon, Dec 28 2024 *)
  • PARI
    is(n)=if(n%2==0, return(n==2)); if(n<27, return(1)); forprime(p=2,bigomega(n), if(n%p==0, return(0))); 1 \\ Charles R Greathouse IV, Sep 14 2015

A091373 Number of numbers <= n having exactly as many prime factors as the value of their smallest prime factor.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 04 2004

Keywords

Comments

a(n) = #{m: A001222(m)=A020639(m), m<=n};
A091372(n) + a(n) + A091374(n) = n.

Crossrefs

A377723 Numbers whose number of prime factors (counted with repetition) is greater than or equal to its smallest prime factor.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116
Offset: 1

Views

Author

James C. McMahon, Dec 28 2024

Keywords

Comments

Numbers k such that A001222(k) >= A020639(k).
Complement of A091377.
A091371(a(n)) < 1: A001222(a(n)) => A020639(a(n)).

Examples

			4 is a term because bigomega(4) = spf(4) = 2.
12 is a term because bigomega(12) = 3 > spf(12) = 2.
3 is not a term because bigomega(3) = 1 < spf(3) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[116], PrimeOmega[#]>=FactorInteger[#][[1, 1]]&]
Showing 1-6 of 6 results.