cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055664 Norms of Eisenstein-Jacobi primes.

Original entry on oeis.org

3, 4, 7, 13, 19, 25, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 121, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 289, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 529, 541, 547, 571
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2000

Keywords

Comments

These are the norms of the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2.
Let us say that an integer n divides a lattice if there exists a sublattice of index n. Example: 3 divides the hexagonal lattice. Then A003136 (Loeschian numbers) is the sequence of divisors of the hexagonal lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. The present sequence gives the prime divisors of the hexagonal lattice. Similarly, A055025 (Norms of Gaussian primes) is the sequence of "prime divisors" of the square lattice. - Jean-Christophe Hervé, Dec 04 2006

Examples

			There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A16.
  • L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI.

Crossrefs

Cf. A055665-A055668, A055025-A055029, A135461, A135462. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice.
The Z[sqrt(-5)] analogs are in A020669, A091727, A091728, A091729, A091730 and A091731.

Programs

  • Mathematica
    Join[{3}, Select[Range[600], (PrimeQ[#] && Mod[#, 6] == 1) || (PrimeQ[Sqrt[#]] && Mod[Sqrt[#], 3] == 2) & ]] (* Jean-François Alcover, Oct 09 2012, from formula *)
  • PARI
    is(n)=(isprime(n) && n%3<2) || (issquare(n,&n) && isprime(n) && n%3==2) \\ Charles R Greathouse IV, Apr 30 2013

Formula

Consists of 3; rational primes == 1 (mod 3) [A002476]; and squares of rational primes == -1 (mod 3) [A003627^2].

Extensions

More terms from David Wasserman, Mar 21 2002

A033205 Primes of form x^2 + 5*y^2.

Original entry on oeis.org

5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 1009, 1021, 1049, 1061, 1069, 1109, 1129, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1361, 1381, 1409, 1429, 1481, 1489
Offset: 1

Views

Author

Keywords

Comments

It is a classical result that p is of the form x^2 + 5y^2 if and only if p = 5 or p == 1 or 9 mod 20 (see Cox, page 33). - N. J. A. Sloane, Sep 20 2012
Except for 5, also primes of the form x^2 + 25y^2. See A140633. - T. D. Noe, May 19 2008
Or, 5 and all primes p that divide Fibonacci((p - 1)/2) = A121568(n). - Alexander Adamchuk, Aug 07 2006

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subsequence of A091729.
Primes in A020669 (numbers of form x^2+5y^2). Cf. A121568, A139643, A216815.
Cf. A029718, A106865 (in the same genus).

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | NormEquation(5,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 5, 10000] (* see A106856 *)
  • PARI
    is(n)=my(k=n%20); n==5 || ((k==9 || k==9) && isprime(n)) \\ Charles R Greathouse IV, Feb 09 2017

Formula

A020669 INTERSECT A000040.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A119996 Numerator of Sum_{k=1..n} 1/(Fibonacci(k)*Fibonacci(k+2)).

Original entry on oeis.org

1, 5, 14, 39, 103, 272, 713, 1869, 4894, 12815, 33551, 87840, 229969, 602069, 1576238, 4126647, 10803703, 28284464, 74049689, 193864605, 507544126, 1328767775, 3478759199, 9107509824, 23843770273, 62423800997, 163427632718
Offset: 1

Views

Author

Alexander Adamchuk, Aug 03 2006

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> F(n+1)*F(n+2)-1); # G. C. Greubel, Jul 23 2019
  • Magma
    [Fibonacci(n+1)* Fibonacci(n+2)-1: n in [1..30]]; // Vincenzo Librandi, Aug 14 2012
    
  • Maple
    with(combinat): seq(fibonacci(n+1)*fibonacci(n+2)-1, n=1..30); # Zerinvary Lajos, Jan 31 2008
  • Mathematica
    Numerator[Table[Sum[1/(Fibonacci[k]*Fibonacci[k+2]),{k,n}],{n,30}]]
    LinearRecurrence[{3,0,-3,1},{1,5,14,39},30] (* Harvey P. Dale, Aug 22 2011 *)
  • PARI
    vector(30, n, f=fibonacci; f(n+1)*f(n+2)-1) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    f=fibonacci; [f(n+1)*f(n+2)-1 for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4); a(0)=1, a(1)=5, a(2)=14, a(3)=39. - Harvey P. Dale, Aug 22 2011
G.f.: ((x-2)*x-1)/(x^4 - 3*x^3 + 3*x - 1). - Harvey P. Dale, Aug 22 2011
a(n) = Fibonacci(n+1)*Fibonacci(n+2) - 1. - Gary Detlefs, Mar 31 2012
a(n) = Sum_{k=1..n} Fibonacci(k+1)^2. Can be proved by induction from Gary Detlefs formula. - Joel Courtheyn, Mar 15 2021
Showing 1-3 of 3 results.