cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A175573 Decimal expansion of Pi^(1/4)/Gamma(3/4).

Original entry on oeis.org

1, 0, 8, 6, 4, 3, 4, 8, 1, 1, 2, 1, 3, 3, 0, 8, 0, 1, 4, 5, 7, 5, 3, 1, 6, 1, 2, 1, 5, 1, 0, 2, 2, 3, 4, 5, 7, 0, 7, 0, 2, 0, 5, 7, 0, 7, 2, 4, 5, 2, 1, 8, 8, 8, 5, 9, 2, 0, 7, 9, 0, 3, 1, 5, 9, 8, 1, 8, 5, 6, 7, 3, 2, 2, 6, 7, 1, 0, 9, 7, 9, 5, 9, 6, 0, 5, 6, 1, 6, 1, 8, 4, 8, 9, 6, 7, 9, 7, 6, 4, 0, 3, 7, 4, 1
Offset: 1

Views

Author

R. J. Mathar, Jul 15 2010

Keywords

Comments

Entry 34 a of chapter 11 of Ramanujan's second notebook. Entry 34 b is A085565.

Examples

			1.0864348112133080145753161...
		

Crossrefs

Programs

  • Magma
    C := ComplexField(); [(Pi(C))^(1/4)/Gamma(3/4)]; // G. C. Greubel, Nov 05 2017
  • Maple
    Pi^(1/4)/GAMMA(3/4) ; evalf(%) ;
  • Mathematica
    RealDigits[ Pi^(1/4)/Gamma[3/4], 10, 105][[1]] (* Jean-François Alcover, Jul 04 2013 *)
  • PARI
    Pi^(1/4)/gamma(3/4) \\ G. C. Greubel, Nov 05 2017
    
  • PARI
    2*suminf(k=0,exp(-Pi)^(k^2))-1 \\ Hugo Pfoertner, Sep 17 2018
    

Formula

Equals A092040 / A068465.
Equals Sum_{n=-oo..oo} exp(-Pi*n^2), or also EllipticTheta(3, 0, exp(-Pi)). - Jean-François Alcover, Jul 04 2013
Equals sqrt(A175574). - Amiram Eldar, Jul 04 2023
Equals Gamma(1/4)/(sqrt(2)*Pi^(3/4)). - Vaclav Kotesovec, Jul 04 2023
Equals Product_{k>=1} tanh((1/2 + i/2)*Pi*k), i=sqrt(-1). - _Antonio Graciá Llorente, Mar 20 2024
Equals Product_{k>=0} (1/2)*(((k+1/2)/(k+1))^(1/2)+((k+1)/(k+1/2))^(1/2)). - Antonio Graciá Llorente, Jul 23 2024
Equals (1/A096427)^2 (see Spanier and Oldham at p. 258). - Stefano Spezia, Dec 31 2024
Equals 2*A319332 = 1/A327995. - Hugo Pfoertner, Dec 31 2024

A367842 Decimal expansion of limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 0, 1, 9, 5, 3, 9, 7, 9, 9, 8, 9, 7, 3, 8, 1, 7, 4, 1, 8, 5, 3, 0, 0, 7, 8, 2, 7, 1, 8, 9, 4, 7, 4, 4, 3, 7, 2, 7, 7, 0, 9, 3, 9, 5, 6, 3, 0, 2, 4, 7, 5, 6, 6, 9, 9, 2, 0, 8, 2, 3, 4, 5, 7, 0, 6, 5, 4, 7, 1, 9, 5, 1, 8, 4, 1, 7, 2, 4, 6, 9, 9, 4, 8, 6, 3, 9, 0, 2, 6, 4, 1, 9, 3, 5, 0, 8, 6, 0, 4
Offset: 1

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Comments

Limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(1/n) = sqrt(2*Pi).

Examples

			1.23456019539799897381741853007827189474437277093956302475669920823457...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Pi)^(1/4)/Glaisher, 10, 120][[1]]
    Exp[Integrate[x*Log[Gamma[x]], {x, 0, 1}]]

Formula

Equals (2*Pi)^(1/4) / A, where A = A074962 is the Glaisher-Kinkelin constant.
Equals A010767 * A092040 / A074962.
Equals exp(Integral_{x=0..1} x*log(Gamma(x)) dx).

A248557 Decimal expansion of (Pi/2)^(1/4)/Gamma(3/4).

Original entry on oeis.org

9, 1, 3, 5, 7, 9, 1, 3, 8, 1, 5, 6, 1, 1, 6, 8, 2, 1, 4, 0, 7, 2, 4, 2, 5, 9, 3, 4, 0, 1, 2, 2, 2, 0, 8, 9, 7, 0, 1, 9, 6, 3, 9, 1, 6, 3, 9, 3, 4, 6, 9, 0, 3, 3, 4, 1, 9, 6, 9, 6, 5, 3, 1, 2, 6, 5, 9, 0, 8, 0, 0, 9, 3, 7, 2, 0, 0, 9, 1, 1, 3, 9, 6, 3, 2, 8, 8, 9, 8, 3, 3, 5, 9, 5, 8, 0, 1, 3, 8, 8, 9, 8, 5
Offset: 0

Author

Jean-François Alcover, Dec 15 2014

Keywords

Examples

			0.913579138156116821407242593401222089701963916393469...
		

Programs

  • Mathematica
    RealDigits[(Pi/2)^(1/4)/Gamma[3/4], 10, 103] // First
  • PARI
    (Pi/2)^(1/4)/gamma(3/4) \\ Michel Marcus, Dec 15 2014

Formula

Also equals theta_2(0,exp(-Pi)), where 'theta' is the elliptic theta function.
Equals A175573 / exp(4*A251992/Pi + Pi/4).
Equals Product_{k>=1} tanh(k*Pi/2). - Amiram Eldar, Jun 12 2021

A380099 a(n) is the n-digit numerator of the fraction h/k with h and k coprime positive integers at which abs((h/k)^4-Pi) is minimal.

Original entry on oeis.org

4, 97, 888, 9551, 13549, 505311, 4601995, 87956765, 298132602
Offset: 1

Author

Stefano Spezia, Jan 12 2025

Keywords

Comments

a(1)^4 = 4^4 = 256 corresponds to the numerator of A210621.
It appears that the number of correct decimal digits of Pi obtained from the fraction a(n)/A380100(n) is A130773(n-1) for n > 1 (see Spezia in Links). - Stefano Spezia, Apr 20 2025

Examples

			  n               (h/k)^4    approximated value
  -   -------------------    ------------------
  1               (4/3)^4    3.1604938271604...
  2             (97/73)^4    3.1174212867620...
  3           (888/667)^4    3.1415829223858...
  4         (9551/7174)^4    3.1415927852873...
  5       (13549/10177)^4    3.1415926560044...
  ...
		

Crossrefs

Cf. A355622, A364844, A380100 (denominator).

Programs

  • Mathematica
    nmax = 3; a = {}; hmin = kmin = 0; For[n = 1, n <= nmax, n++, minim = Infinity; For[h = 10^(n-1), h <10^n, h++, For[k = 1, k < 10^n/Pi^(1/4), k++, If[(dist = Abs[h^4/k^4-Pi]) < minim && GCD[h,k]==1, minim = dist; hmin=h; kmin = k]]]; AppendTo[a, hmin]]; a

Extensions

a(6)-a(9) from Kritsada Moomuang, Apr 17 2025

A385568 Decimal expansion of Pi^(3/4).

Original entry on oeis.org

2, 3, 5, 9, 7, 3, 0, 4, 9, 2, 4, 1, 4, 6, 9, 6, 8, 8, 7, 5, 7, 8, 4, 7, 4, 4, 6, 4, 5, 2, 1, 9, 3, 4, 4, 4, 2, 4, 5, 8, 0, 4, 0, 5, 3, 6, 9, 3, 7, 8, 1, 8, 4, 5, 7, 2, 8, 1, 9, 6, 5, 9, 3, 5, 3, 7, 1, 5, 4, 2, 1, 9, 4, 1, 5, 6, 1, 5, 4, 8, 2, 1, 4, 0, 0, 7, 5, 0, 0, 6, 9, 7, 7, 7, 2, 5, 9, 1, 9, 6, 2, 8, 8, 3, 4, 4, 6, 5, 1, 1
Offset: 1

Author

Artur Jasinski, Jul 03 2025

Keywords

Examples

			2.35973049241469688757847446452193444245804053693781...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^(3/4), 10, 105][[1]]

Formula

Equals sqrt(A175476).
Equals A092040^3.
Showing 1-5 of 5 results.