A093907 Number of elements in the n-th period of the periodic table as predicted by the Aufbau principle.
2, 8, 8, 18, 18, 32, 32, 50, 50, 72, 72, 98, 98, 128, 128, 162, 162, 200, 200, 242, 242, 288, 288, 338, 338, 392, 392, 450, 450, 512, 512, 578, 578, 648, 648, 722, 722, 800, 800, 882, 882, 968, 968, 1058, 1058, 1152, 1152, 1250, 1250, 1352, 1352, 1458, 1458
Offset: 1
Examples
a(1) = 2: hydrogen and helium.
References
- Restrepo, G. and Pachon, L., Pythagoras and the Periodic Table, Journal of Chemical Education, submitted, 2004.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Guillermo Restrepo and Leonardo A. Pachon, Mathematical Aspects of the Periodic Law, Foundations of Chemistry volume 9, pages 189-214 (2007); arXiv:math/0611410 [math.GM]
- Wikipedia, Aufbau principle
- M. Winter, WebElements Periodic Table
Programs
-
GAP
List([1..60],n->(2*n+3+(-1)^n)^2/8); # Muniru A Asiru, Mar 18 2019
-
Magma
[(2*n+3+(-1)^n)^2/8: n in [1..60]]; // Vincenzo Librandi, Mar 01 2016
-
Maple
A093907:=n->(2*n+3+(-1)^n)^2/8: seq(A093907(n), n=1..100); # Wesley Ivan Hurt, Jan 10 2017
-
Mathematica
Table[(2 n + 3 + (-1)^n)^2/8, {n, 60}] (* Bruno Berselli, Jun 03 2014 *)
-
PARI
{for (n=1, 20000, a=2*floor((n+2)/2)^2; write("b093907.txt", n, " ", a); )} \\ Harry J. Smith, Jun 17 2009
-
Python
from math import floor a = lambda n : 2*floor((n+2)/2)**2 for i in range(1, 60): print("{}, ".format(a(i)), end="") # Christoph B. Kassir, Apr 06 2022
Formula
a(n) = 2*floor((n+2)/2)^2. - Leonardo Pachon (leaupaco(AT)yahoo.es), Jul 31 2004
From R. J. Mathar, Oct 04 2009: (Start)
a(n) = 2*A008794(n+2).
G.f.: 2*x*(1 + 3*x - x^3 - 2*x^2 + x^4)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n+3+(-1)^n)^2/8, from Luce ETIENNE. - Bruno Berselli, Jun 03 2014
E.g.f.: ((4 + 3*x + x^2)*cosh(x) + (1 + 5*x + x^2)*sinh(x))/2. - Stefano Spezia, Aug 13 2022
Extensions
More terms added by Harry J. Smith, Jun 17 2009
Definition clarified by Donghwi Park, Mar 01 2016
Comments