A269510 Duplicate of A093907.
2, 8, 8, 18, 18, 32, 32, 50, 50
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 1: n in [1..50]]; // Vincenzo Librandi, May 03 2011
a(n)=(2*n^3+12*n^2+25*n-6+(-1)^n*(3*n+6))/12 \\ Charles R Greathouse IV, Oct 18 2022
Flatten@ Table[2 (n #)^2 & /@ {-1, 1}, {n, 4}] (* Michael De Vlieger, Jul 22 2016 *)
From _Lara Pudwell_, Jun 09 2019: (Start) a(1)=2. The alternating permutation of length 1+3=4 with the maximum number of copies of 123 is 1324. The two copies are 124 and 134. a(2)=4. The alternating permutation of length 2+3=5 with the maximum number of copies of 123 is 13254. The four copies are 124, 125, 134, and 135. a(3)=12. The alternating permutation of length 3+3=6 with the maximum number of copies of 123 is 132546. The twelve copies are 124, 125, 126, 134, 135, 136, 146, 156, 246, 256, 346, and 356. (End)
[(n+1)*(3+2*n^2+4*n-3*(-1)^n)/12: n in [1..50] ]; // Vincenzo Librandi, Aug 06 2011
LinearRecurrence[{2,1,-4,1,2,-1},{2, 4, 12, 20, 38, 56},50] (* G. C. Greubel, Jul 19 2016 *) Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12, {n, 50}] (* Michael De Vlieger, Jul 20 2016 *)
a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,2,1,-4,1,2]^(n-1)*[2;4;12;20;38;56])[1,1] \\ Charles R Greathouse IV, Jul 21 2016
From _Felix Fröhlich_, Jun 02 2019: (Start) Irregular table starts as follows, where Z denotes the atomic number: Z | Element name | Electrons per shell ----------------------------------------- 1 | Hydrogen | 1 2 | Helium | 2 3 | Lithium | 2, 1 4 | Beryllium | 2, 2 5 | Boron | 2, 3 6 | Carbon | 2, 4 7 | Nitrogen | 2, 5 8 | Oxygen | 2, 6 9 | Fluorine | 2, 7 10 | Neon | 2, 8 11 | Sodium | 2, 8, 1 12 | Magnesium | 2, 8, 2 13 | Aluminium | 2, 8, 3 14 | Silicon | 2, 8, 4 15 | Phosphorus | 2, 8, 5 16 | Sulfur | 2, 8, 6 17 | Chlorine | 2, 8, 7 18 | Argon | 2, 8, 8 19 | Potassium | 2, 8, 8, 1 20 | Calcium | 2, 8, 8, 2 21 | Scandium | 2, 8, 9, 2 22 | Titanium | 2, 8, 10, 2 23 | Vanadium | 2, 8, 11, 2 24 | Chromium | 2, 8, 13, 1 25 | Manganese | 2, 8, 13, 2 26 | Iron | 2, 8, 14, 2 27 | Cobalt | 2, 8, 15, 2 (End)
a:=[2,8,8,18,18];; for n in [6..54] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; Concatenation([0],a); # Muniru A Asiru, Oct 25 2018
0,seq(op([2*n^2,2*n^2]),n=1..30); # Muniru A Asiru, Oct 25 2018
Rest@ Flatten@ Table[2 (n #)^2 & /@ {-1, 1}, {n, 0, 27}] (* or *) Rest@ CoefficientList[Series[-2 x^2 (x^4 - x^3 - 2 x^2 + 3 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 54}], x] (* Michael De Vlieger, Jul 22 2016 *)
concat(0, Vec(-2*x^2*(x^4-x^3-2*x^2+3*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 06 2014
Table[Reverse@ Range[2 n^2], {n, 5}] // Flatten (* Michael De Vlieger, Jul 22 2016 *)
[(12+n+3*(-1)^n*n+2*n^3)/12: n in [1..60]]; // Vincenzo Librandi, Jul 20 2016
LinearRecurrence[{2,1,-4,1,2,-1},{1,3,5,13,21,39},50] (* Harvey P. Dale, Nov 29 2014 *) Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12 + 1, {n, 0, 46}] (* Michael De Vlieger, Jul 19 2016, after Vincenzo Librandi at A168380 *)
27 terms: 2, 2 for beryllium, ... Every structure is palindromic (even and odd mixed). Also 2*A106314.
Comments