cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095794 a(n) = A005449(n) - 1, where A005449 = second pentagonal numbers.

Original entry on oeis.org

1, 6, 14, 25, 39, 56, 76, 99, 125, 154, 186, 221, 259, 300, 344, 391, 441, 494, 550, 609, 671, 736, 804, 875, 949, 1026, 1106, 1189, 1275, 1364, 1456, 1551, 1649, 1750, 1854, 1961, 2071, 2184, 2300, 2419, 2541, 2666, 2794, 2925, 3059, 3196, 3336, 3479, 3625
Offset: 1

Views

Author

Gary W. Adamson, Jun 06 2004, Jul 08 2007

Keywords

Comments

Row sums of triangle A131414.
Equals binomial transform of (1,5,3,0,0,0,...). Equals A051340 * (1,2,3,...).
a(n) is essentially the case -1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} (k-2)*i-(k-3). Thus P_{-1}(n) = n*(5-3*n)/2 and a(n) = -P_{-1}(n+2). - Peter Luschny, Jul 08 2011
Beginning with n=2, a(n) is the falling diagonal starting with T(1,3) in A049777 (as a square array). - Bob Selcoe, Oct 27 2014

Examples

			a(4) = 25 = A005449(4) - 1.
a(5) = 39 = (3/2)*5^2 + (1/2)*5 - 1.
a(7) = 76 = 3*56 - 3*39 + 25.
a(5) = 39 = right term of M^4 * [1 1 1] = [1 5 39].
For n = 8, a(8) = 8*22 - (1+4+7+10+13+16+19) - 7 = 99. - _Bruno Berselli_, May 04 2010
		

Crossrefs

Programs

Formula

a(n) = (3/2)*n^2 + (1/2)*n - 1 = (n+1)*(3*n-2)/2.
a(n) = A126890(n+1,n-2) for n>1. - Reinhard Zumkeller, Dec 30 2006, corrected by Jason Bandlow (jbandlow(AT)math.upenn.edu), Feb 28 2009
G.f.: x*(-1-3*x+x^2)/(-1+x)^3 = 1 - 3/(-1+x)^3 - 4/(-1+x)^2. - R. J. Mathar, Nov 19 2007
a(n) = n*A016777(n-1) - Sum_{i=1..n-2} A016777(i) - (n-1) = (n+1)*(3*n-2)/2. - Bruno Berselli, May 04 2010
a(n) = 3*n + a(n-1)-1, for n>1, a(1)=1. - Vincenzo Librandi, Nov 16 2010
a(n) = A115067(-n). - Bruno Berselli, Sep 02 2011
From Wesley Ivan Hurt, Dec 22 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
a(n) = Sum_{i=n..2n} (i-1). (End)
E.g.f.: 1 + exp(x)*(3*x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 04 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/(5*sqrt(3)) + 3*log(3)/5 + 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(5*sqrt(3)) + 4*log(2)/5 - 2/5. (End)
a(n) = A000217(n) + A000290(n) - 1. - Leo Tavares, Jun 02 2023

Extensions

Corrected and extended by R. J. Mathar, Jun 23 2006