A096082 Smallest odd prime p such that p^2 | n^(p-1) - 1.
3, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 3, 71, 2693, 863, 29, 29131, 1093, 3, 5, 3, 281
Offset: 1
Links
- C. K. Caldwell, The Prime Glossary, Fermat quotient
- Richard Fischer, Fermat quotients B^(P-1) == 1 (mod P^2)
- W. Keller and J. Richstein, Fermat quotients q_p(a) that are divisible by p
- Carlos Rivera, Puzzle 762. Conjecture from Ribenboim's book, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
f[n_] := Block[{k = 2}, While[k < 5181800 && PowerMod[n, Prime[k] - 1, Prime[k]^2] != 1, k++ ]; If[k == 5181800, 0, Prime[k]]]; Table[ f[n], {n, 70}] (* Robert G. Wilson v, Jul 23 2004 *)
-
PARI
for(n=2, 20, forprime(p=3, 1e9, if(Mod(n, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jul 24 2014
Formula
a(n) = A039951(n) for all n not of the form 4k+1, while a(4k+1) > A039951(4k+1) = 2. - Alexander Adamchuk, Dec 03 2006
Extensions
Definition corrected by Alexander Adamchuk, Nov 27 2006
Edited by Max Alekseyev, Oct 07 2009
Edited and updated by Max Alekseyev, Jan 29 2012
Comments