cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097733 Pell equation solutions (7*b(n))^2 - 2*(5*a(n))^2 = -1 with b(n)=A097732(n), n >= 0. Note that D=50=2*5^2 is not squarefree.

Original entry on oeis.org

1, 197, 39005, 7722793, 1529074009, 302748930989, 59942759261813, 11868363584907985, 2349876047052519217, 465263588952813896981, 92119840736610099083021, 18239263202259846804541177
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (7,1), (1393,197), (275807,39005), ... give the positive integer solutions to x^2 - 50*y^2 =-1.
		

Crossrefs

Cf. A097731 for S(n, 198).
Row 7 of array A188647.

Programs

  • GAP
    a:=[1,197];; for n in [3..20] do a[n]:=198*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,197]; [n le 2 select I[n] else 198*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{198, -1},{1, 197},20] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-198*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-198*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 2*99) - S(n-1, 2*99) = T(2*n+1, 5*sqrt(2))/(5*sqrt(2)), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 14*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-198*x+x^2).
a(n) = 198*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=197. - Philippe Deléham, Nov 18 2008
a(n) = k^n + k^(-n) - a(n-1) = A003499(3n) - a(n-1), where k = (sqrt(2)+1)^6 = 99 + 70*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Pell(6*n + 6 - 2*k) - Pell(6*n + 2*k) )/( Pell(6 - 2*k) - Pell(2*k) ), for k an arbitrary integer.
a(n) = ( Pell(6*n + 6 - 2*k - 1) + Pell(6*n + 2*k + 1) )/( Pell(6 - 2*k - 1) + Pell(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 197, 0, 39005, 0, 7722793, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -200, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/196. - Peter Bala, Mar 26 2015

A097732 Pell equation solutions (7*a(n))^2 - 2*(5*b(n))^2 = -1 with b(n):=A097733(n), n >= 0. Note that D=50=2*5^2 is not squarefree.

Original entry on oeis.org

1, 199, 39401, 7801199, 1544598001, 305822602999, 60551330795801, 11988857674965599, 2373733268312392801, 469987198268178808999, 93055091523831091789001, 18424438134520287995413199, 3647945695543493192000024401, 722274823279477131728009418199
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Also numbers k such that (7*k+1)^2 + (7*k-1)^2 is a square. - Bruno Berselli, Oct 11 2019

Examples

			(x,y) = (7,1), (1393,197), (275807,39005), ... give the positive integer solutions to x^2 - 50*y^2 =-1.
		

Crossrefs

Cf. A097731 for S(n, 2*99), A100047.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    LinearRecurrence[{198, -1}, {1, 199}, 12] (* Ray Chandler, Aug 11 2015 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*99*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 2*99*x + x^2).
a(n) = S(n, 2*99) + S(n-1, 2*99) = S(2*n, 10*sqrt(2)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 7*i)/(7*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 198*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=199. - Philippe Deléham, Nov 18 2008
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Pell(6*n + 6 - 2*k) + Pell(6*n + 2*k) )/( Pell(6 - 2*k) + Pell(2*k) ), for k an arbitrary integer.
a(n) = ( Pell(6*n + 6 - 2*k - 1) - Pell(6*n + 2*k + 1) )/( Pell(6 - 2*k - 1) - Pell(2*k + 1) ), for k an arbitrary integer, k != 1.
The aerated sequence (b(n))n>=1 = [1, 0, 199, 0, 39401, 0, 7801199, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -196, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = (1/7)*sinh((2*n + 1)*arcsinh(7)). - Bruno Berselli, Apr 03 2018

A097735 Pell equation solutions (8*a(n))^2 - 65*b(n)^2 = -1 with b(n):=A097736(n), n >= 0.

Original entry on oeis.org

1, 259, 66821, 17239559, 4447739401, 1147499525899, 296050429942541, 76379863425649679, 19705708713387674641, 5083996468190594407699, 1311651383084459969511701, 338400972839322481539611159, 87306139341162115777250167321, 22524645549046986548049003557659
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (8,1), (2072,257), (534568,66305), ... give the positive integer solutions to x^2 - 65*y^2 =-1.
		

Crossrefs

Cf. A097731 for S(n, 2*129).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    LinearRecurrence[{258, -1}, {1, 259}, 20] (* Harvey P. Dale, Oct 30 2011 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*129*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 2*129*x + x^2).
a(n) = S(n, 2*129) + S(n-1, 2*129) = S(2*n, 2*sqrt(65)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 8*i)/(8*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 258*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=259. - Philippe Deléham, Nov 18 2008
a(n) = (1/8)*sinh((2*n + 1)*arcsinh(8)). - Bruno Berselli, Apr 03 2018

A111647 a(n) = A001541(n)*A001653(n+1)*A002315(n).

Original entry on oeis.org

1, 105, 20213, 3998709, 791704585, 156753394977, 31036379835581, 6145046450172525, 1216688160731724433, 240898110778299543129, 47696609245941810082565, 9443687732585695622131557
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 105 = 3*5*7.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
    

Formula

2*a(n) = A001109(3*n+1) + A001109(n+1).
a(n) = sqrt(A011900(2*n)*A046090(2*n)*A001109(2*n+1)).
a(n) = A001541(3*n) + 2*A001109(n)*A001541(n-1)*A001541(n).
For n>0, a(n) = A001652(3*n) - A053141(2*n)*A002315(n-1) - A001652(n-1).
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024

A383742 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 5, 4, 0, 1, 14, 35, 12, 5, 0, 1, 34, 197, 204, 29, 6, 0, 1, 82, 1155, 2772, 1189, 70, 7, 0, 1, 198, 6725, 39236, 39005, 6930, 169, 8, 0, 1, 478, 39203, 551532, 1332869, 548842, 40391, 408, 9, 0, 1, 1154, 228485, 7761996, 45232349, 45278310, 7722793, 235416, 985, 10
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Examples

			Square array begins:
  0,  0,    0,     0,       0,        0, ...
  1,  1,    1,     1,       1,        1, ...
  2,  2,    6,    14,      34,       82, ...
  3,  5,   35,   197,    1155,     6725, ...
  4, 12,  204,  2772,   39236,   551532, ...
  5, 29, 1189, 39005, 1332869, 45232349, ...
		

Crossrefs

Columns k=0..6 give A001477, A000129, A001109, A041085(n-1), A091761, A292423, A097731(n-1).
Rows n=0..5 give A000004, A000012, A002203, A383720, A383740, A383741.
Main diagonal gives A380083.
Cf. A028412.

Programs

  • Mathematica
    A[n_, k_] := Fibonacci[k*n, 2]/Fibonacci[k, 2]; A[n_, 0] := n; Table[A[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 08 2025 *)
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n, k) = if(k==0, n, pell(k*n)/pell(k));

Formula

A(0,k) = 0, A(1,k) = 1; A(n,k) = A002203(k) * A(n-1,k) - (-1)^k * A(n-2,k) for n > 1.
A(n,k) = Pell(k*n)/Pell(k) for k > 0.

A003773 Number of spanning trees in K_4 X P_n.

Original entry on oeis.org

16, 3456, 686000, 135834624, 26894628304, 5325000912000, 1054323287943536, 208750686023540736, 41331581509440922000, 8183444388183674181504, 1620280657278860350213424, 320807386696826179092096000
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Programs

  • Mathematica
    LinearRecurrence[{204, -1190, 204, -1},{16, 3456, 686000, 135834624},12] (* Ray Chandler, Aug 11 2015 *)

Formula

a(1) = 16,
a(2) = 3456,
a(3) = 686000,
a(4) = 135834624,
a(5) = 26894628304 and
a(n) = 205a(n-1) - 1394a(n-2) + 1394a(n-3) - 205a(n-4) + a(n-5).
a(n) = 204*a(n-1) - 1190*a(n-2) + 204*a(n-3) - a(n-4). - Paul Raff, Jun 04 2008
G.f.: 16x(1+12x+x^2)/((1-6x+x^2)(x^2-198x+1)). a(n) = 35*A097731(n-1)/2 - 3*A001109(n)/2. - R. J. Mathar, Dec 16 2008
a(n)=16*(A001109(n))^3=16*A001109(n)*A001110(n). [R. Guy, seqfan list, Mar 28 2009] - R. J. Mathar, Jun 03 2009

Extensions

More terms from Paul Raff, Jun 04 2008
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
Showing 1-6 of 6 results.